Effective sample size for computing prior hyperparameters in Bayesian phase I–II dose-finding

Author:

Thall Peter F1,Herrick Richard C1,Nguyen Hoang Q1,Venier John J1,Norris J Clift1

Affiliation:

1. Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Abstract

Background: The efficacy–toxicity trade-off based design is a practical Bayesian phase I–II dose-finding methodology. Because the design’s performance is very sensitive to prior hyperparameters and the shape of the target trade-off contour, specifying these two design elements properly is essential. Purpose: The goals are to provide a method that uses elicited mean outcome probabilities to derive a prior that is neither overly informative nor overly disperse, and practical guidelines for specifying the target trade-off contour. Methods: A general algorithm is presented that determines prior hyperparameters using least squares penalized by effective sample size. Guidelines for specifying the trade-off contour are provided. These methods are illustrated by a clinical trial in advanced prostate cancer. A new version of the efficacy–toxicity program is provided for implementation. Results: Together, the algorithm and guidelines provide substantive improvements in the design’s operating characteristics. Limitations: The method requires a substantial number of elicited values and design parameters, and computer simulations are required to obtain an acceptable design. Conclusion: The two key improvements greatly enhance the efficacy–toxicity design’s practical usefulness and are straightforward to implement using the updated computer program. The algorithm for determining prior hyperparameters to ensure a specified level of informativeness is general, and may be applied to models other than that underlying the efficacy–toxicity method.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3