Performance of Cox regression models for composite time-to-event endpoints with component-wise censoring in randomized trials

Author:

Speiser Jaime Lynn1ORCID,Ambrosius Walter T1,Pajewski Nicholas M1

Affiliation:

1. Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC, USA

Abstract

Background Composite time-to-event endpoints are beneficial for assessing related outcomes jointly in clinical trials, but components of the endpoint may have different censoring mechanisms. For example, in the PRagmatic EValuation of evENTs And Benefits of Lipid-lowering in oldEr adults (PREVENTABLE) trial, the composite outcome contains one endpoint that is right censored (all-cause mortality) and two endpoints that are interval censored (dementia and persistent disability). Although Cox regression is an established method for time-to-event outcomes, it is unclear how models perform under differing component-wise censoring schemes for large clinical trial data. The goal of this article is to conduct a simulation study to investigate the performance of Cox models under different scenarios for composite endpoints with component-wise censoring. Methods We simulated data by varying the strength and direction of the association between treatment and outcome for the two component types, the proportion of events arising from the components of the outcome (right censored and interval censored), and the method for including the interval-censored component in the Cox model (upper value and midpoint of the interval). Under these scenarios, we compared the treatment effect estimate bias, confidence interval coverage, and power. Results Based on the simulation study, Cox models generally have adequate power to achieve statistical significance for comparing treatments for composite outcomes with component-wise censoring. In our simulation study, we did not observe substantive bias for scenarios under the null hypothesis or when the treatment has a similar relative effect on each component outcome. Performance was similar regardless of if the upper value or midpoint of the interval-censored part of the composite outcome was used. Conclusion Cox regression is a suitable method for analysis of clinical trial data with composite time-to-event endpoints subject to different component-wise censoring mechanisms.

Funder

Wake Forest Older Americans Independence Center

National Institute on Aging

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3