Informative cluster size in cluster-randomised trials: A case study from the TRIGGER trial

Author:

Kahan Brennan C1ORCID,Li Fan2ORCID,Blette Bryan3,Jairath Vipul45,Copas Andrew1ORCID,Harhay Michael3

Affiliation:

1. MRC Clinical Trials Unit at UCL, London, UK

2. Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT, USA

3. Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

4. Division of Gastroenterology, Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada

5. Department of Epidemiology and Biostatistics, Western University, London, ON, Canada

Abstract

Background Recent work has shown that cluster-randomised trials can estimate two distinct estimands: the participant-average and cluster-average treatment effects. These can differ when participant outcomes or the treatment effect depends on the cluster size (termed informative cluster size). In this case, estimators that target one estimand (such as the analysis of unweighted cluster-level summaries, which targets the cluster-average effect) may be biased for the other. Furthermore, commonly used estimators such as mixed-effects models or generalised estimating equations with an exchangeable correlation structure can be biased for both estimands. However, there has been little empirical research into whether informative cluster size is likely to occur in practice. Method We re-analysed a cluster-randomised trial comparing two different thresholds for red blood cell transfusion in patients with acute upper gastrointestinal bleeding to explore whether estimates for the participant- and cluster-average effects differed, to provide empirical evidence for whether informative cluster size may be present. For each outcome, we first estimated a participant-average effect using independence estimating equations, which are unbiased under informative cluster size. We then compared this to two further methods: (1) a cluster-average effect estimated using either weighted independence estimating equations or unweighted cluster-level summaries, and (2) estimates from a mixed-effects model or generalised estimating equations with an exchangeable correlation structure. We then performed a small simulation study to evaluate whether observed differences between cluster- and participant-average estimates were likely to occur even if no informative cluster size was present. Results For most outcomes, treatment effect estimates from different methods were similar. However, differences of >10% occurred between participant- and cluster-average estimates for 5 of 17 outcomes (29%). We also observed several notable differences between estimates from mixed-effects models or generalised estimating equations with an exchangeable correlation structure and those based on independence estimating equations. For example, for the EQ-5D VAS score, the independence estimating equation estimate of the participant-average difference was 4.15 (95% confidence interval: −3.37 to 11.66), compared with 2.84 (95% confidence interval: −7.37 to 13.04) for the cluster-average independence estimating equation estimate, and 3.23 (95% confidence interval: −6.70 to 13.16) from a mixed-effects model. Similarly, for thromboembolic/ischaemic events, the independence estimating equation estimate for the participant-average odds ratio was 0.43 (95% confidence interval: 0.07 to 2.48), compared with 0.33 (95% confidence interval: 0.06 to 1.77) from the cluster-average estimator. Conclusion In this re-analysis, we found that estimates from the various approaches could differ, which may be due to the presence of informative cluster size. Careful consideration of the estimand and the plausibility of assumptions underpinning each estimator can help ensure an appropriate analysis methods are used. Independence estimating equations and the analysis of cluster-level summaries (with appropriate weighting for each to correspond to either the participant-average or cluster-average treatment effect) are a desirable choice when informative cluster size is deemed possible, due to their unbiasedness in this setting.

Funder

Medical Research Council

National Heart, Lung, and Blood Institute

patient-centered outcomes research institute

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistical analysis plan for the NU IMPACT stepped-wedge cluster randomized trial;Contemporary Clinical Trials;2024-08

2. Demystifying estimands in cluster-randomised trials;Statistical Methods in Medical Research;2024-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3