Adaptive parametric prediction of event times in clinical trials

Author:

Lan Yu1,Heitjan Daniel F12

Affiliation:

1. Department of Statistical Science, Southern Methodist University, Dallas, TX, USA

2. Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA

Abstract

Background: In event-based clinical trials, it is common to conduct interim analyses at planned landmark event counts. Accurate prediction of the timing of these events can support logistical planning and the efficient allocation of resources. As the trial progresses, one may wish to use the accumulating data to refine predictions. Purpose: Available methods to predict event times include parametric cure and non-cure models and a nonparametric approach involving Bayesian bootstrap simulation. The parametric methods work well when their underlying assumptions are met, and the nonparametric method gives calibrated but inefficient predictions across a range of true models. In the early stages of a trial, when predictions have high marginal value, it is difficult to infer the form of the underlying model. We seek to develop a method that will adaptively identify the best-fitting model and use it to create robust predictions. Methods: At each prediction time, we repeat the following steps: (1) resample the data; (2) identify, from among a set of candidate models, the one with the highest posterior probability; and (3) sample from the predictive posterior of the data under the selected model. Results: A Monte Carlo study demonstrates that the adaptive method produces prediction intervals whose coverage is robust within the family of selected models. The intervals are generally wider than those produced assuming the correct model, but narrower than nonparametric prediction intervals. We demonstrate our method with applications to two completed trials: The International Chronic Granulomatous Disease study and Radiation Therapy Oncology Group trial 0129. Limitations: Intervals produced under any method can be badly calibrated when the sample size is small and unhelpfully wide when predicting the remote future. Early predictions can be inaccurate if there are changes in enrollment practices or trends in survival. Conclusions: An adaptive event-time prediction method that selects the model given the available data can give improved robustness compared to methods based on less flexible parametric models.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3