Efficacy and cost-effectiveness of an automated screening algorithm in an inpatient clinical trial

Author:

Beauharnais Catherine C1,Larkin Mary E12,Zai Adrian H23,Boykin Emily C1,Luttrell Jennifer3,Wexler Deborah J12

Affiliation:

1. Massachusetts General Hospital Diabetes Center, Boston, MA, USA

2. Harvard Medical School, Boston, MA, USA

3. Massachusetts General Hospital Laboratory of Computer Science, Boston, MA, USA

Abstract

Introduction Screening and recruitment for clinical trials can be costly and time-consuming. Inpatient trials present additional challenges because enrollment is time sensitive based on length of stay. We hypothesized that using an automated prescreening algorithm to identify eligible subjects would increase screening efficiency and enrollment and be cost-effective compared to manual review of a daily admission list. Methods Using a before-and-after design, we compared time spent screening, number of patients screened, enrollment rate, and cost-effectiveness of each screening method in an inpatient diabetes trial conducted at Massachusetts General Hospital. Manual chart review (CR) involved reviewing a daily list of admitted patients to identify eligible subjects. The automated prescreening (APS) method used an algorithm to generate a daily list of patients with glucose levels ≥ 180 mg/dL, an insulin order, and/or admission diagnosis of diabetes mellitus. The census generated was then manually screened to confirm eligibility and eliminate patients who met our exclusion criteria. We determined rates of screening and enrollment and cost-effectiveness of each method based on study sample size. Results Total screening time (prescreening and screening) decreased from 4 to 2 h, allowing subjects to be approached earlier in the course of the hospital stay. The average number of patients prescreened per day increased from 13 ± 4 to 30 ± 16 (P < 0.0001). Rate of enrollment increased from 0.17 to 0.32 patients per screening day. Developing the computer algorithm added a fixed cost of US$3000 to the study. Based on our screening and enrollment rates, the algorithm was cost-neutral after enrolling 12 patients. Larger sample sizes further favored screening with an algorithm. By contrast, higher recruitment rates favored individual CR. Limitations Because of the before-and-after design of this study, it is possible that unmeasured factors contributed to increased enrollment. Conclusion Using a computer algorithm to identify eligible patients for a clinical trial in the inpatient setting increased the number of patients screened and enrolled, decreased the time required to enroll them, and was less expensive. Upfront investment in developing a computerized algorithm to improve screening may be cost-effective even for relatively small trials, especially when the recruitment rate is expected to be low.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3