Estimation of optimal dynamic treatment regimes

Author:

Zhao Ying-Qi1,Laber Eric B2

Affiliation:

1. Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA

2. Department of Statistics, North Carolina State University, Raleigh, NC, USA

Abstract

Background Recent advances in medical research suggest that the optimal treatment rules should be adaptive to patients over time. This has led to an increasing interest in studying dynamic treatment regime, a sequence of individualized treatment rules, one per stage of clinical intervention, which maps present patient information to a recommended treatment. There has been a recent surge of statistical work for estimating optimal dynamic treatment regimes from randomized and observational studies. The purpose of this article is to review recent methodological progress and applied issues associated with estimating optimal dynamic treatment regimes. Methods We discuss sequential multiple assignment randomized trials, a clinical trial design used to study treatment sequences. We use a common estimator of an optimal dynamic treatment regime that applies to sequential multiple assignment randomized trials data as a platform to discuss several practical and methodological issues. Results We provide a limited survey of practical issues associated with modeling sequential multiple assignment randomized trials data. We review some existing estimators of optimal dynamic treatment regimes and discuss practical issues associated with these methods including model building, missing data, statistical inference, and choosing an outcome when only non-responders are re-randomized. We mainly focus on the estimation and inference of dynamic treatment regimes using sequential multiple assignment randomized trials data. Dynamic treatment regimes can also be constructed from observational data, which may be easier to obtain in practice; however, care must be taken to account for potential confounding.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3