Algorithmic benchmark modulation: A novel method to develop success rates for clinical studies

Author:

Willigers Bart JA1ORCID,Nagarajan Sridevi12,Ghiorghui Serban1,Darken Patrick3ORCID,Lennard Simon12

Affiliation:

1. AstraZeneca, Cambridge, UK

2. AstraZeneca, Royston, UK

3. AstraZeneca, Gaithersburg, MD, USA

Abstract

Background High-quality decision-making in the pharmaceutical industry requires accurate assessments of the Probability of Technical Success of clinical trials. Failure to do so will lead to lost opportunities for both patients and investors. Pharmaceutical companies employ different methodologies to determine Probability of Technical Success values. Some companies use power and assurance calculations; others prefer to use industry benchmarks with or without the overlay of subjective modulations. At AstraZeneca, both assurance calculations and industry benchmarks are used, and both methods are combined with modulations. Methods AstraZeneca has recently implemented a simple algorithm that allows for modulation of a Probability of Technical Success value. The algorithm is based on a set of multiple-choice questions. These questions cover a comprehensive set of issues that have historically been considered by AstraZeneca when subjective modulations to Probability of Technical Success values were made but do so in a much more structured way. Results A set of 57 phase 3 Probability of Technical Success assessments suggests that AstraZeneca’s historical estimation of Probability of Technical Success has been reasonably accurate. A good correlation between the subjective modulation and the modulation algorithm was found. This latter observation, combined with the finding that historically AstraZeneca has been reasonably accurate in its estimation of Probability of Technical Success, gives confidence in the validity of the novel method. Discussion Although it is too early to demonstrate whether the method has improved the accuracy of company’s Probability of Technical Success assessments, we present our data and analysis here in the hope that it may assist the pharmaceutical industry in addressing this key challenge. This new methodology, developed for pivotal studies, enables AstraZeneca to develop more consistent Probability of Technical Success assessments with less effort and can be used to adjust benchmarks as well as assurance calculations. Conclusion The Probability of Technical Success modulation algorithm addresses several concerns generally associated with assurance calculations or benchmark without modulation: selection biases, situations where little relevant prior data are available and the difficulty to model many factors affecting study outcomes. As opposed to using industry benchmarks, the Probability of Technical Success modulation algorithm allows to accommodate project-specific considerations.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3