Inference on covariate effect types for treatment effectiveness in a randomized trial with a binary outcome

Author:

Chiba Yasutaka1

Affiliation:

1. Clinical Research Center, Kinki University Hospital, Osakasayama, Japan

Abstract

Background/aims Some randomized clinical trials seek to establish covariate effect types that indicate whether a covariate is predictive and/or prognostic, in addition to endpoint evaluation. Here, for a case with a binary outcome, we propose that the covariate effect type should be assessed in terms of four types of potential responses: activated- (always-), inert- (never-), causative-, and preventive-responder. Methods We introduce a new concept of covariate effect types differing from the commonly used “prediction” and “prognosis.” We summarize the covariate effect types by inspecting the proportions of subjects in each response type in two subgroups of a covariate, and indicate whether the fractions are augmented, depleted, or neutral as one changes the level of the covariate. Although these proportions cannot generally be identified, we can derive the posterior distributions of the proportions by applying a recently developed Bayesian method. On the basis of the distributions, we would say that the covariate is “augmented-causative” if the difference between the proportions of causative-responders (who would respond if they received the treatment but would not if they did not) in two subgroups is positive, rather than that it is predictive. Similarly, we would say that the covariate is “neutral-activated” if the difference in the proportion of activated-responders (who would respond regardless of their randomized treatment assignment) is close to zero, rather than saying that the covariate is not prognostic. We further describe the relationship between our approach and standard subgroup analysis. Results We applied our approach to data from a randomized clinical trial comparing nivolumab and docetaxel for subjects with advanced nonsquamous non-small-cell lung cancer; we assessed the covariate effect type of PD-L1 status, where PD-L1 is a ligand of the programmed death 1 (PD-1) receptor expressed by activated T cells. When the endpoint was the overall response rate, the posterior distributions for the differences between the proportions of subjects in response types in the PD-L1-positive and negative subgroups yielded an expected-a-posteriori estimate of 0.243 (95% credible interval (CI): 0.094, 0.374) for causative-responders and 0.014 (95% CI: −0.087, 0.125) for activated-responders. Thus, PD-L1 status was augmented-causative for nivolumab effectiveness, to an extent of 24.3%, and was neutral-activated. Conclusion Our approach characterizes the covariate effect types in terms of the response types, and to what extent. In a randomized clinical trial with a binary outcome, our approach is a potentially valuable addition to standard subgroup or regression analysis.

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3