Potential Implications of Missing Income Data in Population-Based Surveys: An Example from a Postpartum Survey in California

Author:

Kim Soowon1,Egerter Susan2,Cubbin Catherine23,Takahashi Eugene R.4,Braveman Paula2

Affiliation:

1. Center on Social Disparities in Health, Department of Family and Community Medicine, University of California, San Francisco, CA (Current affliation: Health Improvement Program, Stanford Prevention Research Center, Stanford University, Stanford, CA)

2. Center on Social Disparities in Health, Department of Family and Community Medicine, University of California, San Francisco, CA

3. Population Research Center, University of Texas at Austin, Austin, TX

4. Epidemiology, Assessment and Program Development, Maternal, Child, and Adolescent Health Program, California Department of Public Health, Sacramento, CA

Abstract

Objectives. Income data are often missing for substantial proportions of survey participants and these records are often dropped from analyses. To explore the implications of excluding records with missing income, we examined characteristics of survey participants with and without income information. Methods. Using statewide population-based postpartum survey data from the California Maternal and Infant Health Assessment, we compared the age, education, parity, marital status, timely prenatal care initiation, and neighborhood poverty characteristics of women with and without reported income data, overall, and by race/ethnicity/nativity. Results. Overall, compared with respondents who reported income, respondents with missing income information generally appeared younger, less educated, and of lower parity. They were more likely to be unmarried, to have received delayed or no prenatal care, and to reside in poor neighborhoods; and they generally appeared more similar to lower- than higher-income women. However, the patterns appeared to vary by racial/ethnic/nativity group. For example, among U.S.-born African American women, the characteristics of the missing-income group were generally similar to those of low-income women, while European American women with missing income information more closely resembled their moderate-income counterparts. Conclusions. Respondents with missing income information may not be a random subset of population-based survey participants and may differ on other relevant sociodemographic characteristics. Before deciding how to deal analytically with missing income information, researchers should examine relevant characteristics and consider how different approaches could affect study findings. Particularly for ethnically diverse populations, we recommend including a missing income category or employing multiple-imputation techniques rather than excluding those records.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3