Identifying Algorithms to Improve the Accuracy of Unverified Diagnosis Codes for Birth Defects

Author:

Salemi Jason L.12,Rutkowski Rachel E.2,Tanner Jean Paul2,Matas Jennifer L.1,Kirby Russell S.2

Affiliation:

1. Department of Family and Community Medicine, Baylor College of Medicine, Houston, TX, USA

2. Birth Defects Surveillance Program, Department of Community and Family Health, College of Public Health, University of South Florida, Tampa, FL, USA

Abstract

Objectives: We identified algorithms to improve the accuracy of passive surveillance programs for birth defects that rely on administrative diagnosis codes for case ascertainment and in situations where case confirmation via medical record review is not possible or is resource prohibitive. Methods: We linked data from the 2009-2011 Florida Birth Defects Registry, a statewide, multisource, passive surveillance program, to an enhanced surveillance database with selected cases confirmed through medical record review. For each of 13 birth defects, we calculated the positive predictive value (PPV) to compare the accuracy of 4 algorithms that varied case definitions based on the number of diagnoses, medical encounters, and data sources in which the birth defect was identified. We also assessed the degree to which accuracy-improving algorithms would affect the Florida Birth Defects Registry’s completeness of ascertainment. Results: The PPV generated by using the original Florida Birth Defects Registry case definition (ie, suspected cases confirmed by medical record review) was 94.2%. More restrictive case definition algorithms increased the PPV to between 97.5% (identified by 1 or more codes/encounters in 1 data source) and 99.2% (identified in >1 data source). Although PPVs varied by birth defect, alternative algorithms increased accuracy for all birth defects; however, alternative algorithms also resulted in failing to ascertain 58.3% to 81.9% of cases. Conclusions: We found that surveillance programs that rely on unverified diagnosis codes can use algorithms to dramatically increase the accuracy of case finding, without having to review medical records. This can be important for etiologic studies. However, the use of increasingly restrictive case definition algorithms led to a decrease in completeness and the disproportionate exclusion of less severe cases, which could limit the widespread use of these approaches.

Funder

National Center on Birth Defects and Developmental Disabilities

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3