Using Emergency Medical Services Data to Monitor Nonfatal Opioid Overdoses in Real Time

Author:

Hallowell Benjamin D.1ORCID,Chambers Laura C.1,Rhodes Jason1,Basta Melissa1,Viner-Brown Samara1,Lasher Leanne1

Affiliation:

1. Rhode Island Department of Health, Providence, RI, USA

Abstract

Objective No case definition exists that allows public health authorities to accurately identify opioid overdoses using emergency medical services (EMS) data. We developed and evaluated a case definition for suspected nonfatal opioid overdoses in EMS data. Methods To identify suspected opioid overdose–related EMS runs, in 2019 the Rhode Island Department of Health (RIDOH) developed a case definition using the primary impression, secondary impression, selection of naloxone in the dropdown field for medication given, indication of medication response in a dropdown field, and keyword search of the report narrative. We developed the case definition with input from EMS personnel and validated it using an iterative process of random medical record review. We used naloxone administration in consideration with other factors to avoid misclassification of opioid overdoses. Results In 2018, naloxone was administered during 2513 EMS runs in Rhode Island, of which 1501 met our case definition of a nonfatal opioid overdose. Based on a review of 400 randomly selected EMS runs in which naloxone was administered, the RIDOH case definition accurately identified 90.0% of opioid overdoses and accurately excluded 83.3% of non–opioid overdose–related EMS runs. Use of the case definition enabled analyses that identified key patterns in overdose locations, people who experienced repeat overdoses, and the creation of hotspot maps to inform outbreak detection and response. Practice Implications EMS data can be an effective tool for monitoring overdoses in real time and informing public health practice. To accurately identify opioid overdose–related EMS runs, the use of a comprehensive case definition is essential.

Funder

centers for disease control and prevention

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3