LOSS OF PROTEINPOLYSACCHARIDES AT SITES WHERE BONE MINERALIZATION IS INITIATED

Author:

BAYLINK D.12,WERGEDAL J.12,THOMPSON E.12

Affiliation:

1. University of Washington School of Medicine and Veterans Administration Hospital, Seattle, Washington 98108

2. Veterans Administration Hospital, Seattle, Washington 98108

Abstract

In both ground sections and demineralized frozen sections of the rat tibial cortex, osteoid but not mature bone matrix stained for proteinpolysaccharides with the Alcian Blue and toluidine blue techniques. The loss of proteinpolysaccharide staining occurred precisely at the mineralizing front, which was identified by in vivo lead or procion markers, not only in normal animals but also in animals in which osteoid width was either increasing or decreasing. In vitro, both proteases and saccharidases abolished proteinpolysaccharide staining of osteoid. Critical electrolyte concentration and other procedures indicated that the major acid polysaccharide component in osteoid is chondroitin sulfate. Consistent with these findings, electron microprobe analyses revealed that sulfur concentration was high in osteoid but dropped abruptly as calcium concentration increased at the mineralizing front. The precise synchronization between loss of proteinpolysaccharides and onset of mineralization under various experimental conditions provides strong indirect evidence that the loss of these macromolecules is somehow involved in initiation of mineralization in bone.

Publisher

SAGE Publications

Subject

Histology,Anatomy

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3