A New Type of Biocompatible Bridging Structure Supports Axon Regrowth after Implantation into the Lesioned Rat Optic Tract

Author:

Plant Giles W.1,Harvey Alan R.1

Affiliation:

1. Department of Anatomy and Human Biology, The University of Western Australia, Nedlands, Perth, WA 6907, Australia

Abstract

We have developed a new type of polymer/cell/matrix implant and tested whether it can promote the regrowth of retinal ganglion cell (RGC) and other axons across surgically induced tissue defects in the CNS. The constructs, which consisted of 2–2.5-mm-long polycarbonate tubes filled with lens capsule-derived extracellular matrix coated with cultured neonatal Schwann cells, were implanted into lesion cavities made in the left optic tract (OT) of 18–21-day-old rats. In one group, to promote Schwann cell proliferation and perhaps also to stimulate axon regrowth, basic fibroblast growth factor (bFGF) was added to the lens capsule matrix prior to implantation. In another group, to determine whether application of growth factors to the somata of cells enhances the regrowth of distally injured axons, the neurotrophin NT-4/5 was injected into the eye contralateral to the OT lesion. NT-4/5 and bFGF treatments were combined in some rats. After medium-term (4–10 weeks) or long-term (15–20 weeks) survivals, axon growth into implants was assessed immunohistochemically using a neurofilament (RT97) antibody. RGC axons were visualized after injection of WGA/HRP into the right eye. Viable Schwann cells were present in implants at all times after transplantation. Large numbers of RT97+ axons were consistently found within the bridging implants, often associated with the peripheral glia. Axons were traced up to 1.7 mm from the nearest CNS neuropil and there was immunohistochemical evidence of myelination by Schwann cells and by host oligodendrocytes. There were fewer RGC axons in the implants, fibers growing up to 1.6 mm from the thalamus. Neither NT-4/5 nor bFGF, alone or in combination, significantly increased the extent of RGC axon growth within the implants. A group of OT-lesioned rats was implanted with polymer tubes filled with 2–2.5-mm-long pieces of predegenerate peripheral nerve. Surprisingly, polymer/cell/matrix constructs contained comparatively greater numbers of RGC and other axons and supported more extensive axon elongation. Thus, implants of this type may potentially be useful in bridging large tissue defects in the CNS.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 6.17 Peripheral Nerve Regeneration ☆;Comprehensive Biomaterials II;2017

2. Nanomedicine for the treatment of retinal and optic nerve diseases;Current Opinion in Pharmacology;2013-02

3. Optic nerve regeneration;Expert Review of Ophthalmology;2012-12

4. Scaffolds to promote spinal cord regeneration;Handbook of Clinical Neurology;2012

5. Peripheral Nerve Regeneration;Comprehensive Biomaterials;2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3