Supplementation With Vitamin E, Zinc, Selenium, and Copper Re-Establishes T-Cell Function and Improves Motor Recovery in a Rat Model of Spinal Cord Injury

Author:

Garcia Elisa1,Hernández-Ayvar Fernanda1,Rodríguez-Barrera Roxana1,Flores-Romero Adrián1,Borlongan Cesar2,Ibarra Antonio1

Affiliation:

1. Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud, Universidad Anáhuac México Campus Norte, Huixquilucan, México

2. Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA

Abstract

Spinal cord injury (SCI) causes a dysfunction of sympathetic nervous system innervation that affects the immune system, leading to immunosuppression syndrome (ISS) and contributing to patient degeneration and increased risk of several infections. A possible therapeutic strategy that could avoid further patient deterioration is the supplementation with Vitamin E or trace elements, such as Zinc, Selenium, and Copper, which individually promotes T-cell differentiation and proliferative responses. For this reason, the aim of the present study was to evaluate whether Vitamin E, Zinc, Selenium, and Copper supplementation preserves the number of T-lymphocytes and improves their proliferative function after traumatic SCI. Sprague–Dawley female rats were subjected to moderate SCI and then randomly allocated into three groups: (1) SCI + supplements; (2) SCI + vehicle (olive oil and phosphate-buffered saline); and (3) sham-operated rats. In all rats, the intervention was initiated 15 min after SCI and then administered daily until the end of study. Locomotor recovery was assessed at 7 and 15 days after SCI. At 15 days after supplementation, the quantification of the number of T-cells and its proliferation function were examined. Our results showed that the SCI + supplements group presented a significant improvement in motor recovery at 7 and 15 days after SCI. In addition, this group showed a better T-cell number and proliferation rate than that observed in the group with SCI + vehicle. Our findings suggest that Vitamin E, Zinc, Selenium, and Copper supplementation could be part of a therapy for patients suffering from acute SCI, helping to preserve T-cell function, avoiding complications, and promoting a better motor recovery. All procedures were approved by the Animal Bioethics and Welfare Committee (Approval No. 201870; CSNBTBIBAJ 090812960).

Funder

Universidad Anáhuac México Campus Norte

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3