Intrauterine Injection of Umbilical Cord Mesenchymal Stem Cell Exosome Gel Significantly Improves the Pregnancy Rate in Thin Endometrium Rats

Author:

Zhang Shengning12,Wang Dongmei2,Yang Fang1,Shen Yanjun1,Li Dong3ORCID,Deng Xiaohui1ORCID

Affiliation:

1. Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, P.R. China

2. Reproductive Medicine Center, Yantaishan Hospital, Yantai, P.R. China

3. Cryomedicine Lab, Qilu Hospital of Shandong University, Jinan, P.R. China

Abstract

Human umbilical cord mesenchymal stem cell (HUMSC)-exosome gel played a significant role in promoting thin endometrial receptivity and improving the pregnancy rate by inhibiting endometrial fibrosis and accelerating subendometrial microangiogenesis. High-quality HUMSC-exosome were obtained by pretreating HUMSC with transforming growth factor-β1 (TGF-β1). Exosome gel mixture has good biocompatibility and physical rheological properties, stabilizing the structure of exosomes and prolonging the action of exosomes in the uterine cavity. HUMSC or HUMSC-derived exosomes were used to treat rat model of thin endometrium. In animal experiments, four groups, including the HUMSC, HUMSC-exosome, model (negative control), and sham operation groups, were designed. The therapeutic effects were evaluated by the thickness of the endometrium, the number of glands, the subendometrial vessel density, the markers of endometrial receptivity, and the pregnancy rate. In an in vivo study, three groups, involving HUMSC-coculture, HUMSC-exosome, and the control, were explored. The proliferation and migration of the human endometrial stromal cells (HESCs) were further determined by cell scratch and 5-ethynyl-2′-deoxyuridine (EdU) assays. The protein expression of the TGF-β1/smad2/3 signaling pathway was determined by Western blot. After treatment, the thickness of the endometrium, the number of glands, and the subendometrial microangiogenesis were obviously increased, and the level of inhibition of endometrial fibrosis, molecular markers of endometrial receptivity, and the pregnancy rate were also significantly improved. HUMSC-exosome and HUMSC significantly promoted the migration and proliferation of HESCs. And it was confirmed that HUMSC-exosome were superior to HUMSC in inhibiting HESCs fibrosis through TGF-β1/smad2/3 signaling pathway at the protein expression level.

Funder

the Natural Science Foundation of Shan Dong Province

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3