NeuroRegen Scaffolds Combined with Autologous Bone Marrow Mononuclear Cells for the Repair of Acute Complete Spinal Cord Injury: A 3-Year Clinical Study

Author:

Chen Wugui12,Zhang Ying12,Yang Sizhen1,Sun Jing1,Qiu Hao1,Hu Xu1,Niu Xiaojian1,Xiao Zhifeng3,Zhao Yannan3,Zhou Yue1,Dai Jianwu3,Chu Tongwei1ORCID

Affiliation:

1. Xinqiao Hospital, Department of Orthopedics, Army Medical University, Chongqing, China

2. *  Both the authors contributed equally as first author

3. State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China

Abstract

Spinal cord injury (SCI) remains among the most challenging pathologies worldwide and has limited therapeutic possibilities and a very bleak prognosis. Biomaterials and stem cell transplantation are promising treatments for functional recovery in SCI. Seven patients with acute complete SCI diagnosed by a combination of methods were included in the study, and different lengths (2.0–6.0 cm) of necrotic spinal cord tissue were surgically cleaned under intraoperative neurophysiological monitoring. Subsequently, NeuroRegen scaffolds loaded with autologous bone marrow mononuclear cells (BMMCs) were implanted into the cleaned site. All patients participated in 6 months of rehabilitation and at least 3 years of clinical follow-up. No adverse symptoms associated with stem cell or functional scaffold implantation were observed during the 3-year follow-up period. Additionally, partial shallow sensory and autonomic nervous functional improvements were observed in some patients, but no motor function recovery was observed. Magnetic resonance imaging suggested that NeuroRegen scaffold implantation supported injured spinal cord continuity after treatment. These findings indicate that implantation of NeuroRegen scaffolds combined with stem cells may serve as a safe and promising clinical treatment for patients with acute complete SCI. However, determining the therapeutic effects and exact application methods still requires further study.

Funder

Clinical Research Project of the Second Affiliated Hospital of the Army Military Medical University

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3