Intravenous transplantation of olfactory bulb ensheathing cells for a spinal cord hemisection injury rat model

Author:

Zhang Lijian1234,Zhuang Xiaoqing54ORCID,Chen Yao12,Xia Hechun12

Affiliation:

1. Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China

2. Ningxia Human Stem Cell Research Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China

3. Surgery Laboratory, General Hospital of Ningxia Medical University, Yinchuan, China

4. Both the authors are co-authors and contributed equally to this article

5. Department of Nuclear Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China

Abstract

Cellular transplantation strategies utilizing intraspinal or intrathecal olfactory ensheathing cells (OECs) have been reported as beneficial for spinal cord injury (SCI). However, there are many disadvantages of these methods, including additional trauma to the spinal cord parenchyma and technical challenges. Therefore, we investigated the feasibility and potential benefits of intravenous transplantation of OECs in a rat hemisection SCI model. OECs derived from olfactory bulb tissue were labeled with quantum dots (QDs), and their biodistribution after intravenous transplantation was tracked using a fluorescence imaging system. Accumulation of the transplanted OECs was observed in the injured spinal cord within 10 min, peaked at seven days after cell transplantation, and decreased gradually thereafter. This time window corresponded to the blood–spinal cord barrier (BSCB) opening time, which was quantitated with the Evans blue leakage assay. Using immunohistochemistry, we examined neuronal growth (GAP-43), remyelination (MBP), and microglia (Iba-1) reactions at the lesion site. Motor function recovery was also measured using a classic open field test (Basso, Beattie and Bresnahan score). Compared with the group injected only with QDs, the rats that received OEC transplantation exhibited a prominent reduction in inflammatory responses, increased neurogenesis and remyelination, and significant improvement in motor function. We suggest that intravenous injection could also be an effective method for delivering OECs and improving functional outcomes after SCI. Moreover, the time course of BSCB disruption provides a clinically relevant therapeutic window for cell-based intervention.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3