Retinogenesis in a Dish: Bibliometric Analysis and Visualization of Retinal Organoids From 2011 to 2022

Author:

Shen Wenyue1,Shao An1,Zhou Wuyuan2,Lou Lixia1,Grzybowski Andrzej3,Jin Kai1ORCID,Ye Juan1

Affiliation:

1. Eye Center, The Second Affiliated Hospital School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, China

2. Zhejiang Academy of Science and Technology Information, Hangzhou, China

3. Institute for Research in Ophthalmology, Foundation for Ophthalmology Development, Poznan, Poland

Abstract

Retinal organoid (RO) is the three-dimensional (3D) retinal culture derived from pluripotent or embryonic stem cells which recapitulates organ functions, which was a revolutionary milestone in stem cell technology. The purpose of this study is to explore the hotspots and future directions on ROs, as well as to better understand the fields of greatest research opportunities. Eligible publications related to RO from 2011 to 2022 were acquired from the Web of Science (WoS) Core Collection database. Bibliometric analysis was performed by using software including VOSviewer, CiteSpace, and ArcGIS. A total of 520 articles were included, and the number of annual publications showed a rapid increase with an average rate of 40.86%. The United States published the most articles (241/520, 46.35%) with highest total citation frequencies (5,344). University College London (UK) contributed the largest publication output (40/520, 7.69%) and received highest total citation frequencies. Investigative Ophthalmology & Visual Science was the most productive journal with 129 articles. Majlinda Lako contributed the most research with 32 articles, while Olivier Goureau has the strongest collaboration work. Research could be subdivided into four keyword clusters: “culture and differentiation,” “morphogenesis and modeling,” “gene therapy,” and “transplantation and visual restoration,” and evolution of keywords was identified. Last decade has witnessed the huge progress in the field of RO, which is a young and promising research area with extensive and in-depth studies. More attention should be paid to RO-related models and therapies based on specific retinal diseases, especially inherited retinopathies.

Funder

National Key Research and Development Program of China

Medical Science and Technology Project of Zhejiang Province

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Clinical Medical Research Center for Eye Diseases of Zhejiang Province

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3