Cryopreservation in Situ of Cell Monolayers on Collagen Vitrigel Membrane Culture Substrata: Ready-to-Use Preparation of Primary Hepatocytes and ES Cells

Author:

Miyamoto Yoshitaka12,Enosawa Shin1,Takeuchi Tomoyo2,Takezawa Toshiaki2

Affiliation:

1. Department of Innovative Surgery, National Research Institute for Child Health and Development, Tokyo, Japan

2. Transgenic Animal Research Center, National Institute of Agrobiological Sciences, Ibaraki, Japan

Abstract

Cryopreservation is generally performed on cells in suspension. In the case of adherent cells such as hepatocytes, a loss of their ability to attach is a more serious problem than a decreased viability after cryopreservation. We herein report a novel technology of direct in situ cryopreservation of cells cultured on collagen vitrigel membranes, which have excellent mechanical strength and can be easily handled by tweezers even when coated with cultured cells. Rat primary hepatocytes, mitomycin C-treated mouse fibroblasts (feeder cells for ES cells), and mouse ES cells on the feeder cells were cultured on collagen vitrigel membranes for 1 day. The membranes with cells attached were then plucked up from the dish, soaked in cryopreservation medium containing 10% dimethyl sulfoxide, frozen using a controlled-rate freezer, and transferred to liquid nitrogen. The cells cultured on plastic cell culture dishes were also frozen as controls. After storage in liquid nitrogen for periods from 1 week to 3 months, the cryopreserved membranes with the cells still attached were thawed by adding warmed culture medium. Cell viability estimated by morphology and functional staining with calcein showed significant improvement in comparison to cells cryopreserved without the collagen vitrigel membrane. The recoveries of living cells after cryopreservation were 26.7%, 76.2%, and 58.6% for rat hepatocytes, mitomycin C-treated mouse fibroblasts, and mouse ES cells on collagen vitrigel membranes, respectively. In contrast, essentially no cells at all remained on the plastic cell culture dishes after thawing. Because adherent cell storage under these conditions is very convenient, the use of this technique employing collagen vitrigel membranes should be generally applicable to the cryopreservation of adherent cells that are otherwise problematic to store as frozen stocks.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3