Global Expression Profiles in 1-Hour Biopsy Specimens of Human Kidney Transplantation from Donors after Cardiac Death

Author:

Kusaka Mamoru1,Kuroyanagi Yoko1,Mori Terumi1,Nagaoka Kayuri1,Sasaki Hitomi1,Maruyama Takahiro1,Hayakawa Kunihiro1,Shiroki Ryoichi1,Kurahashi Hiroki1,Hoshinaga Kiyotaka1

Affiliation:

1. Department of Urology, Division of Molecular Genetics, Institute for Comprehensive Medical Science and 21st Century COE Program, Development Center for Targeted and Minimally Invasive Diagnosis and Treatment, Fujita Health University School of Medicine, Aichi 470-1192, Japan

Abstract

Because of the worldwide shortage of renal grafts, kidney transplantation (KTx) from donors after cardiac death (DCD) is an alternative way to obtain KTx from brain-dead donors. Although the prognosis of DCD KTx is gradually improving, the graft often undergoes delayed graft function (DGF), rendering the control of DGF essential for post-KTx patient care. In an attempt to characterize etiology of DGF, genome-wide gene expression profiling was performed using renal biopsy samples performed at 1 h after KTx from DCD and the data were compared with those of KTx from living donors (LD). A total of 526 genes were differentially expressed between them. Genes involved in acute inflammation were activated, while metabolic pathways were consistently downregulated in DCD. These findings imply the inferior performance of the DCD grafts relative to LD grafts. Several genes were identified where the expression levels were correlated well with parameters indicating short- and long-term prognosis of the DCD patients. In addition, several genes encoding secretory proteins were identified that might reflect the performance of the graft and be potential noninvasive biomarkers. These data provide a good source for candidates of biomarkers that are potentially useful for the control of DGF.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3