The Safe Recipient of SSC Transplantation Prepared by Heat Shock With Busulfan Treatment in Mice

Author:

Ma Wenzhi12,Wang Jia12,Gao Weijun1,Jia Hua1

Affiliation:

1. Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education,Key Laboratory of Reproduction and Genetic of Ningxia Hui Autonomous Region, and Department of Anatomy, Histology and Embryology, School of Basic Medical Science, Ningxia Medical University, Yinchuan, China

2. Wenzhi Ma and Jia Wang contributed equally to this work.

Abstract

Safety is the chief consideration in recipient preparation of spermatogonial stem cell (SSC) transplantation in mammals, especially humans. In this study, we compared the safety of the SSC transplantation recipients that were prepared both by testes heat shock plus testes busulfan injection (heat shock+busulfan(t)) and by busulfan intraperitoneal injection (busulfan i.p.) only. Our results showed that heat shock+busulfan(t) treatment significantly ( p < 0.05) reduced mortality in mice and did not produce bone marrow cell toxicity. Furthermore, heat shock+busulfan(t) treatment directly damaged SSCs and exhausted almost all of the germ cells in the testis; the exhaustion of these cells is considered a key factor in the successful preparation of the recipients. Therefore, we used heat shock+busulfan(t) treatment to prepare recipients of SSC transplantation. Two months after SSC transplantation, the number and length of donor SSC-derived colonies in the testis of recipient in heat shock+busulfan(t) group was closed to that in busulfan i.p. group. Therefore, compared with busulfan i.p. treatment, heat shock+busulfan(t) treatment improved the safety of recipient preparation without reducing the efficiency of SSC transplantation. Two GFP-positive offspring were produced from 1 of the 20 recipients that had mated with female mice 72 days after SSC transplantation. In conclusion, heat shock with busulfan treatment is a safe method to prepare the recipient of SSC transplantation in mice.

Funder

the Key Research and Development Program of Ningxia Hui Autonomous Region

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3