Subcutaneous Xenotransplantation of Hybrid Artificial Pancreas Encapsulating Pancreatic B Cell Line (MIN6): Functional and Histological Study

Author:

Kawakami Yoshiyuki1,Inoue Kazutomo1,Hayashi Hiroyuki1,Wang W.j.1,Setoyama Hiroshi1,Gu Y.J.1,Imamura Masayuki1,Iwata Hiroo2,Ikada Yoshito2,Nozawa Masumi3,Miyazaki Jun-Ichi4

Affiliation:

1. First Department of Surgery, Faculty of Medicine Kyoto University, Kyoto 606, Japan

2. Research Center for Biomedical Engineering, Kyoto University, Kyoto 606, Japan

3. Department of Surgery, Meikai University, Japan

4. Department of Disease-Related Gene Regulation, Faculty of Medicine, University of Tokyo, Tokyo 113, Japan

Abstract

The biohybrid artificial pancreas is designed to enclose pancreatic endocrine tissues with a selectively permeable membrane that immunoisolates the graft from the host immune system, allowing those endocrine tissues to survive and control glucose metabolism for an extended period of time. The pancreatic B cell line MIN6 is established from a pancreas B cell tumor occurring in transgenic mice harboring the human insulin promoter gene connected to the SV40 T-antigen hybrid gene. It has been proven that glucose-stimulated insulin secretion in MIN6 cells retains a concentration-dependent response similar to that of normal islets. In this study, we performed the histological and functional examination of three-layer microbeads employing MIN6 cells after subcutaneous xenotransplantation to evaluate this device as bioartificial pancreas. MIN6 cells were microencapsulated in three-layer microbeads formulated with agarose, polystyrene sulfonic acid, polybrene, and carboxymethyl cellulose. Microbeads were xenogenically implanted in the subcutaneous tissue of the back of Lewis rats with streptozotocin-induced diabetes. One week after implantation, microbeads were retrieved and cultured for 24 h before the static incubation. There was no evidence of adhesion to the graft and the fibrosis in the transplantation site as determined by gross visual inspection. Microscopic examination demonstrated that retrieved microbeads maintained normal shape, containing intact MIN6 cells. Histological study showed that these MIN6 cells in the microbeads appeared to be viable without cellular infiltration within or around the microbeads. Immunohistochemical analysis of the microbeads clearly revealed the intense staining of insulin in the cytoplasm of encapsulated MIN6 cells. Insulin productivity of MIN6 cells in the microbeads is strongly suggested to be preserved. In response to 16.7 mM glucose stimulation, static incubation of microbeads 1 wk after implantation caused the 2.3 times increase in insulin secretion seen after 3.3 mM glucose stimulation (84.3 ± 10.0 vs. 37.4 ± 10.7 μU/3 × 106 cells/hr, n = 5 each, p < 0.01). This study demonstrates that three-layer microbeads encapsulating MIN6 cells retain excellent biocompatibility and maintain good insulin secretion even after subcutaneous xenotransplantation, suggesting the possible future clinical application of this unique bioartificial pancreas to subcutaneous xenotransplantation.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3