A 16-Channel Automated Rotometer System for Reliable Measurement of Turning Behavior in 6-Hydroxydopamine Lesioned and Transplanted Rats

Author:

Hudson John L.1,Levin Dennis R.1,Hoffer Barry J.1

Affiliation:

1. Department of Pharmacology and the Neuroscience Training Program, Campus Box C236, University of Colorado Health Sciences Center, Denver, CO 80262, USA

Abstract

Unilateral 6-hydroxydopamine lesions of the nigrostriatal pathway in rats result in a massive dopamine (DA) denervation of the ipsilateral striatum. Such animals have proven extremely useful as a model for the study of Parkinson's disease, an idiopathic neurodegenerative disorder of humans. Extensive unilateral DA disruption leaves the rat relatively normal in motor behavior; however, the extent of the lesion can be documented by drug-induced rotational behavior. When given an injection of a dopamine agonist, such as apomorphine or d-amphetamine, a lesioned animal will manifest rotational behavior; the number of turns correlates with the degree of unilateral denervation. In order to identify, for various studies, large numbers of animals with specific levels of denervation, the necessity of an automated and reliable rotational counting system (rotometer) becomes obvious. We have developed such a device that allows up to 16 rats to be tested concurrently with one inexpensive computer. This system is more reliable than, and certainly preferable to, more tedious methods such as videotaping and subsequent manual analysis or various other mechanical systems. Plexiglass, formed into large bowls, serve as the rotometer chambers. We have designed a simple, inexpensive, and accurate counting head that can be manufactured from readily available parts and that is very sturdy and reliable. This, together with a thoracic harness, completes the rotometer assembly. The rotational data, from up to 16 separate channels, is collected by a single-chip microprocessor and sent on a serial line to an IBM-type or Macintosh host computer. There, it is graphically displayed on line and subsequently saved to disk with a novel acquisition program. Files generated are in code readable by most spreadsheet software currently available. Therefore, rotational data can be imported to a number of different spreadsheets and macros used for analysis. In summary, the multiple-channel automation for monitoring turning behavior in rats, described here, is a simple, inexpensive and effective system for accurate and rapid data acquisition and analysis.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anti-Parkinson Activity;Drug Discovery and Evaluation: Pharmacological Assays;2016

2. KA-bridged transplantation of mesencephalic tissue and olfactory ensheathing cells in a Parkinsonian rat model;Journal of Tissue Engineering and Regenerative Medicine;2015-10-29

3. Anti-Parkinson Activity;Drug Discovery and Evaluation: Pharmacological Assays;2015

4. Anti-Parkinson Activity;Drug Discovery and Evaluation: Pharmacological Assays;2015

5. PET Imaging of Serotonin Transporters with 4-[18F]-ADAM in a Parkinsonian Rat Model;Cell Transplantation;2013-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3