Osmotic Separation of Pancreatic Exocrine Cells from Crude Islet Cell Preparations

Author:

Liu Chi1,Mcgann Locksley E.12,Gao Dayong1,Haag Brian W.1,Critser John K.13

Affiliation:

1. Cryobiology Research Institute, Methodist Hospital of Indiana, Inc., Indianapolis, IN 46202, USA

2. Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada

3. Departments of Physiology & Biophysics and Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202, USA

Abstract

A novel approach is introduced here to selectively lyse exocrine cells in an islet preparation by hypoosmotic treatment. Time to hypotonic cell lysis required for the islet cells was much longer than that for the exocrine cells, which permits a possibility of selectively killing the exocrine cells by hypotonic treatment. The first set of experiments was designed to select an appropriate osmolality for the hypotonic treatment. Kinetic changes in cell volume in response to extracellular anisosmolalities (30 to 90 mOsm/kg) were recorded using an electronic particle counter. The results indicated that, when exposed to a 30 mOsm/kg solution, islet cells swelled slowly to reach volumetric equilibrium in approximately 3 min. There was no significant hypotonic cell lysis observed even at the end of 4 min (n = 4). In contrast, pancreatic exocrine cells, when exposed to the same solution, expanded rapidly to the lytic volume and burst within 30 s. Significant exocrine cell lysis was invariably achieved within 30 s when cells were exposed to the osmolalities below 60 mOsm/kg. For osmolalities between 70 to 80 mOsm/kg, exocrine cell lysis was highly variable. When cells were exposed to 80 to 90 mOsm/kg, no significant cell lysis was observed. Thus, an osmolality of 50 mOsm/kg is recommended for hypotonic treatment, as it maximizes the lysis of exocrine cells without unnecessarily stressing (osmotically) the islet cells. The second set of experiments (time-course experiments, 20 to 120 s) was designed to determine the length of exposure time for which the exocrine cells were irreversibly damaged but the islet cells had only swollen to such a degree that cell function is restored upon returning to an isotonic condition. Viability of the hypotonic treated cells was evaluated at two different levels: membrane integrity, measured by combined fluorescent dye staining with propidium iodide (PI) and carboxyfluorescein diacetate (CFDA), and mitochondrial function, measured by colorimetric MTT assay. The results showed that hypotonic treatment in a 50 mOsm/kg solution for 30 s resulted in over 85% loss of the membrane integrity for the exocrine cells. About 90% of these membrane lysed cells lost mitochondrial function (n = 3). By contrast, under the same treatment, less than 15% of the islet cells lost membrane integrity and mitochondrial function (n = 3). In conclusion, hypotonic treatment with a 50 mOsm/kg solution for 20 to 30 s at room temperature is sufficient to lyse the majority of the contaminating exocrine cells in an islet cell preparation, while maintaining function in the islet cells.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3