Chitosan–Polyvinyl Pyrrolidone Hydrogels as Candidate for Islet Immunoisolation: In Vitro Biocompatibility Evaluation

Author:

Risbud Makarand1,Hardikar Anandwardhan1,Bhonde Ramesh1

Affiliation:

1. Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Ganeshkhind, Pune 411 007, India

Abstract

The success of immunoisolation devices for islet transplantation depends on the nature of semipermeable membranes, which permit the crossover of micronutrients, glucose, and insulin and prevent the entry of immunocytes and other transplant rejection mechanisms. In the present study we examined the properties of chitosan–polyvinyl pyrrolidone (PVP) hydrogels for possible application as an immunoisolation device. Hydrogels with two different proportions of chitosan–PVP (M1 1:1 and M2 2:1, v/v) were synthesized by cross-linking with glutaraldehyde. Hydrogels were characterized for their hydrophilic nature, protein adsorption, diffusion properties, cytotoxicity, and islet compatibility. Hydrogel membranes were found to be hydrophilic as determined by high octane contact angle value (M1: 142.9 ±0.46; M2: 143.6 + 0.49). Protein adsorption on the hydrogels was found to be low (0.0143 + 0.0027 mg for M1 and 0.0136 ± 0.0049 mg for M2) compared to tissue culture polystyrene (TCPS) (0.0434 ± 0.001 mg) and pure chitosan (0.0214 ± 0.0025 mg) control. Hydrogel M1 was tested as a representative for diffusion studies. M1 allowed regulated transport of insulin and did not allow anti-insulin antibodies to pass through. In vitro biocompatibility of M1 and M2 was found to be excellent with no cytotoxic effects on the HeLa cells as determined by MTT and NR assay. Mouse islets cultured on the hydrogel membranes retained their integrity and intact morphology as assessed by image analysis study. Viability of islets cultured on hydrogels was comparable to that of controls (M1: 97%; M2: 90.4%) as assessed by trypan blue dye exclusion test. Islets retained their functionality when cultured on hydrogels, as judged by insulin secretion in response to glucose challenge (16.0 mM). Although in vivo experiments are awaited, the present study provides sufficient documentation to consider chitosan–PVP membranes as potential candidates for immunoisolation of islets.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3