Long-Term Culture of Glutamine Synthetase-Transfected HepG2 Cells in Circulatory Flow Bioreactor for Development of a Bioartificial Liver

Author:

Enosawa Shin1,Miyashita Tomoyuki1,Suzuki Seiichi1,Li Xiao-Kang1,Tsunoda Miyuki1,Amemiya Hiroshi1,Yamanaka Mitsugu2,Hiramatsu Shinya2,Tanimura Naoko2,Omasa Takeshi2,Suga Kenichi2,Matsumura Toshiharu3

Affiliation:

1. Departtnent of Experimental Surgery and Bioengineering, National Children's Medical Research Center, Tokyo, Japan

2. Graduate School of Technology, University of Osaka, Osaka, Japan

3. Meiji Institute of Health Science, Tokyo, Japan

Abstract

Glutamine synthetase (GS) is involved in an accessory pathway of ammonia removal in mammals. To develop a bioartificial liver with a human cell line, GS gene was transfected into HepG2 cells, which had no ammonia removal activity. After culturing in the presence of methionine sulfoximine (MSX), a GS inhibitor, we obtained a MSX-resistant HepG2 subline (GS-HepG2), which had amplified GS gene; ammonia removal activity was estimated to be 1/7 of that of rat primary culture hepatocytes. The cells were cultured in a circulatory flow bioreactor for 109 days, while they multiplied from 5 × 107 to 4 × 109 cells. Three days after inoculation, the ammonia level of the culture medium was lowered to a level maintained thereafter, suggesting that using recombinant cell lines for bioartificial livers enables long-term repeated treatment for hepatic failure patient. Judging from the rate of decrease in the amount of the added ammonia, the ammonia removal capability of 4 × 109 GS-HepG2 cells was almost equivalent to 5 × 108 porcine hepatocytes inoculated into the circulatory flow bioreactor. Apart from their ammonia removal activity, GS-HepG2 cells eliminated human tumor necrosis factor-α (TNF-α). Cytokine removal therefore promises to be another useful property of bioreactor cells.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3