Constitutive Expression of Glutamic Acid Decarboxylase (GAD) by Striatal Cell Lines Immortalized using the tsA58 Allele of the SV40 Large T Antigen

Author:

Giordano Magda1,Takashima Hideotoshi1,Poltorak Maciej1,Geller Herbert M.1,Freed William J.1

Affiliation:

1. Section on Preclinical Neuroscience, Neuropsychiatry Branch, NIMH Neuroscience Center at St. Elizabeths, Washington, DC 20032, USA

Abstract

Rodent striatal cells were immortalized using the A58 temperature-sensitive allele of the SV40 large T antigen. Seventy-eight clones and 10 mixed cultures were characterized at the nonpermissive and permissive temperatures. Based on morphology and expression of proteins, cells were classified into three primary types, with types b and c expressing some neuronal characteristics. Type a cells have an epithelial-like morphology with coarse cytoplasmic extensions and occasional fine processes. These cells express vimentin, do not grow well under serum-free conditions and, when confluent, form a uniform monolayer. Type b cells have a polygonal shape and usually extend multiple thin processes. These cells possess large nuclei with multiple nucleoli and do not express vimentin. Type c cells have a fibroblast-like appearance, are unipolar or multipolar, and their soma is smaller than that of type b cells. Type c cells do not express vimentin, and when confluent form a uniform monolayer. Some type b and c clones express NCAM and MAP-2. Several type b and c cell lines were found to consistently express glutamic acid decarboxylase (GAD) immunoreactivity under several tissue culture conditions. Selected cell lines were transplanted into the intact adult rat brain in several locations. Cells survived well for 15 wk and did not form tumors. The proteins expressed in vivo were similar to those expressed in vitro.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3