αCGRP Regulates Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells Through ERK1/2 and p38 MAPK Signaling Pathways

Author:

Jiang Yixuan12,Xin Na1,xiong Yi12,Guo Yanjun13,Yuan Ying12,Zhang Qin12,Gong Ping12ORCID

Affiliation:

1. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China

2. Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China

3. Jinjiang Out-Patient Section, West China Hospital of Stomatology, Sichuan University, Chengdu, China

Abstract

As a typical neuropeptide richly distributed in central and peripheral nervous systems, α-calcitonin-gene-related peptide (αCGRP) has recently been found to play a crucial role in bone development and metabolism, but the mechanisms involved are not fully uncovered. Here, this study aimed to investigate the effects and underlying molecular mechanisms of αCGRP in regulating the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). Using microarray technology, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analyses revealed that osteogenic properties of BMSCs were facilitated and mitogen-activated protein kinase (MAPK) signaling pathway was upregulated by αCGRP in this process. Through western blot assay, we proved that αCGRP led to an increased phosphorylation level of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 MAPK signaling cascades in a time-dependent manner. And αCGRP could promote differentiative capacity of BMSCs, showing upregulated mRNA and protein expression level of alkaline phosphatase (Alp), collagen type 1 (Col-1), osteopontin (Opn), and runt-related transcription factor 2 (Runx2), as well as increased ALP activity and calcified nodules. The addition of ERK1/2 or p38 MAPK inhibitor—U0126 or SB203580, resulted in an impaired osteogenic differentiation of BMSCs. Besides, inactivation of this signal transduction had negative impacts on proliferative activity and apoptotic process of αCGRP-mediated BMSCs. Our findings demonstrated that MAPK signaling pathway, at least in part, was responsible for the enhanced BMSCs’ osteogenesis induced by αCGRP, which might offer us promising strategies for bone-related disorders.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3