Tissue Plasminogen Activator Expression in Endothelial Cells Exposed to Cyclic Strain in Vitro

Author:

Iba Toshiaki1,Sumpio Bauer E.1

Affiliation:

1. Department of Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA

Abstract

The effects of cyclic strain on the production of tissue plasminogen activator (tPA) and type 1 plasminogen activator inhibitor (PAI-1) by cultured endothelial cells (EC) were examined. Human saphenous vein EC were seeded in selective areas of culture plates with flexible membrane bottoms (corresponding to specific strain regions) and grown to confluence. Membranes were deformed by vacuum (-20 kPa) at 60 cycles/min (0.5 s strain alternating with 0.5 s relaxation in the neutral position) for 5 days. EC grown in the periphery were subjected to 7-24% strain, while cells grown in the center experienced less than 7% strain. The results show a significant increase in immunoreactive tPA production on days 1, 3 and 5 compared to day 0 in EC subjected to more than 7% cyclic strain. There was no significant elevation of tPA in the medium of EC subjected to less than 7% strain. tPA activity could only be detected in the medium of EC subjected to more than 7% cyclic strain. PAI-1 levels in the medium were not significantly different in either group. In addition, immunocytochemical detection of intracellular tPA and messenger ribonucleic acid (mRNA) expression of tPA (assessed by the reverse transcriptase polymerase chain reaction utilizing tPA specific sense and antisense primers) was significantly increased in EC subjected to more than 7% cyclic strain. We conclude that a 60 cycles/min regimen of strain that is greater than 7% can selectively stimulate tPA production by EC in vitro and may contribute to the relative nonthrombogenicity of the endothelium in vivo.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3