Dexamethasone Attenuates the Enhanced Rewarding Effects of Cocaine Following Experimental Traumatic Brain Injury

Author:

Merkel Steven F.12,Andrews Allison M.12,Lutton Evan M.1,Razmpour Roshanak1,Cannella Lee Anne12,Ramirez Servio H.123

Affiliation:

1. Department of Pathology and Laboratory Medicine, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA

2. Center for Substance Abuse Research, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA

3. Shriners Hospitals Pediatric Research Center, The Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA

Abstract

Clinical studies have identified traumatic brain injury (TBI) as a risk factor for the development of cocaine dependence. This claim is supported by our recent preclinical studies showing enhancement of the rewarding effects of cocaine in mice sustaining moderate controlled cortical impact (CCI) injury during adolescence. Here we test the efficacy of dexamethasone, an anti-inflammatory corticosteroid, to attenuate augmentation of the behavioral response to cocaine observed in CCI-TBI animals using the conditioned place preference (CPP) assay. These studies were performed in order to determine whether proinflammatory activity in the nucleus accumbens (NAc), a key brain nucleus in the reward pathway, mediates enhanced cocaine-induced CPP in adolescent animals sustaining moderate CCI-TBI. Our data reveal robust glial activation in the NAc following CCI-TBI and a significant increase in the cocaine-induced CPP of untreated CCI-TBI mice. Furthermore, our results show that dexamethasone treatment following CCI-TBI can attenuate the cocaine place preference of injured animals without producing aversion in the CPP assay. Our studies also found that dexamethasone treatment significantly reduced the expression of select immune response genes including Monocyte chemoattractant protein-1 (MCP-1/CCL2) and intercellular adhesion molecule-1 ( ICAM-1), returning their expression to control levels, which prompted an investigation of peripheral blood monocytes in dexamethasone-treated animals. Experimental findings showed that no craniectomy/dexamethasone mice had a significant increase, while CCI-TBI/dexamethasone animals had a significant decrease in the percentage of circulating nonclassical patrolling monocytes. These results suggest that a portion of these monocytes may migrate to the brain in response to CCI-TBI, potentially sparing the development of chronic neuroinflammation in regions associated with the reward circuitry such as the NAc. Overall, our findings indicate that anti-inflammatory agents, such as dexamethasone, may be effective in normalizing the rewarding effects of cocaine following CCI-TBI.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3