Human iPS Cell–based Liver-like Tissue Engineering at Extrahepatic Sites in Mice as a New Cell Therapy for Hemophilia B

Author:

Okamoto Ryota12,Takayama Kazuo123,Akita Naoki12,Nagamoto Yasuhito12,Hosokawa Daiki12,Iizuka Shunsuke1,Sakurai Fuminori1,Suemizu Hiroshi4,Ohashi Kazuo1,Mizuguchi Hiroyuki125

Affiliation:

1. Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan

2. Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, Osaka, Japan

3. PRESTO, Japan Science and Technology Agency, Saitama, Japan

4. Central Institute for Experimental Animals, Kanagawa, Japan

5. Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan

Abstract

Instead of liver transplantation or liver-directed gene therapy, genetic liver diseases are expected to be treated effectively using liver tissue engineering technology. Hepatocyte-like cells (HLCs) generated from human-induced pluripotent stem (iPS) cells are an attractive unlimited cell source for liver-like tissue engineering. In this study, we attempted to show the effectiveness of human iPS cell–based liver-like tissue engineering at an extrahepatic site for treatment of hemophilia B, also called factor IX (FIX) deficiency. HLCs were transplanted under the kidney capsule where the transplanted cells could be efficiently engrafted. Ten weeks after the transplantation, human albumin (253 μg/mL) and α-1 antitrypsin (1.2 μg/mL) could be detected in the serum of transplanted mice. HLCs were transplanted under the kidney capsule of FIX-deficient mice. The clotting activities in the transplanted mice were approximately 5% of those in wild-type mice. The bleeding time in transplanted mice was shorter than that in the nontransplanted mice. Taken together, these results indicate the success in generating functional liver-like tissues under the kidney capsule by using human iPS cell–derived HLCs. We also demonstrated that the human iPS cell–based liver-like tissue engineering technology would be an effective treatment of genetic liver disease including hemophilia B.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3