MsrB1 Promotes Proliferation and Invasion of Colorectal Cancer Cells via GSK-3β/β-catenin Signaling Axis

Author:

Chen Xiao-Yu12,Yang Sheng-Yong12ORCID,Ruan Xiao-Jie3,Ding Hong-Yue1,Wang Ning-Xi1,Liu Fang4,Li Jia-Chu5,Li Yi1

Affiliation:

1. Department of Biochemistry and Molecular Biology, Molecular Medicine and Cancer Research Center, College of Basic Medicine, Chongqing Medical University, Chongqing, China

2. Xiao-Yu Chen and Sheng-Yong Yang contributed equally to this article

3. Division of Life Sciences, Department of Biochemical and Biomedical Science, Science Centre, The Chinese University of Hong Kong, Shatin, Hong Kong, China

4. The First Clinical College, Chongqing Medical University, Chongqing, China

5. Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Abstract

Methionine sulfoxide reductase B1 (MsrB1) can catalyze both free and protein-bound R-methionine sulfoxides (R-MetO) to methionine (Met). It has been reported that MsrB1 plays an important role in the development of HCC and human bone osteosarcoma. However, little is known about the functions of MsrB1 in human colorectal cancer (CRC). Herein, we detected MsrB1 expression level in CRC tissue and cell lines, and investigated the effect of MsrB1 knockdown on CRC phenotypes and possible mechanisms involved in. The results showed that MsrB1 was highly expressed in both CRC tissues and cell lines, and that cell proliferation, migration and invasion were significantly inhibited, but apoptosis was increased after MsrB1 knockdown in colorectal cancer HCT116 and RKO cell lines, compared to control siRNA group. In addition, E-cadherin protein level was increased, vimentin and Snail protein were greatly decreased after knockdown of MsrB1 in cells. Furthermore, pGSK-3β (Ser9) and β-catenin protein levels were reduced, the promoter activity of TCF/LEF construction was inhibited after MsrB1 knockdown in cells, suggesting that GSK-3β/β-catenin signaling axis was involved in the tumorigenesis of CRC. In conclusion, the oncogenic role and related mechanisms of MsrB1 in CRC discovered in our work determined the potential role of MsrB1 as a biomarker and may provide a new target for clinical therapy of CRC.

Funder

National Natural Science Foundation of China Grants

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3