Intraductal Collagenase Delivery into the Human Pancreas Using Syringe Loading or Controlled Perfusion

Author:

Lakey Jonathan R. T.1,Warnock Garth L.1,Shapiro A. M. James1,Korbutt Gregory S.1,Ao Ziliang1,Kneteman Norman M.1,Rajotte Ray V.1

Affiliation:

1. Department of Surgery and the Surgical-Medical Research Institute, University of Alberta, Edmonton, Canada

Abstract

Effective intraductal delivery of the enzyme collagenase into the pancreas is crucial to the subsequent ability to isolate viable islets. Most clinical islet transplant centers load the enzyme into the pancreas by retrograde injection using a syringe following cannulation of the pancreatic duct. An alternative approach is to perfuse the pancreas via the pancreatic duct with collagenase solution using a recirculating perfusion device system. This provides control over perfusion pressures and collagenase temperature. This study reports on our evaluation of the delivery of Liberase™-HI into the pancreas of 14 consecutive adult multiorgan cadaveric donors. Alternate glands were procured and processed using an identical protocol with the exception of collagenase delivery. The first group of pancreases was loaded using the perfusion technique where cold (4°C) Liberase™-HI was perfused at 80 mmHg for 5 min after which the pressure was increased to 180 mmHg. The collagenase solution was then slowly warmed to 35°C, transferred to the dissociation chamber and mechanically dissociated, and then purified using discontinuous gradients of Ficoll. Pancreases in the second group were loaded with collagenase (28–32°C) using the syringe technique before mechanical dissociation and purification. There were no significant differences in pancreas cold ischemia, donor age, body mass index, maximum blood glucose, or serum amylase of the donors between the two groups. Mean collagenase digestion time in the digestion chamber was not different between the two groups; however, the amount of undigested tissue remaining after dissociation was significantly higher in the syringe-loaded group (15.3 ± 2.6 g vs. 4.6 ±2.1 g, mean ± SEM, p < 0.05). Postdigestion recovery of islets was 471 ± 83 × 103 IE in the perfusion group compared with 391 ± 57 × 103 IE for the syringe-loaded group. Postpurification recovery was higher in the perfused group (379 ± 45 vs. 251 ± 28 × 103 IE, p < 0.05, two-tailed paired t-test). No difference in in vitro islet viability was observed between the two groups following glucose perifusion with the calculated stimulation index of 4.6 ± 0.6 for the perfusion group and 4.2 ± 0.7 for the syringe-loaded group. Controlled perfusion via the pancreatic duct allows the effective delivery of the enzyme achieving maximal distension to all regions of the pancreas leading to an increased recovery of the islets with no detrimental effect on subsequent in vitro islet function.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 186 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3