Osmotic Tolerance Limits of Canine Pancreatic Islets

Author:

Zieger Michael A. J.1,Woods Erik J.2,Lakey Jonathan R. T.3,Liu Jun2,Critser John K.2

Affiliation:

1. Methodist Research Institute, Inc., Clarian Health Partners, Inc., Indianapolis, IN 46206

2. Cryobiology Research Institute, Wells Research Center, Indiana University Medical School, Indianapolis, IN 46202

3. Comprehensive Tissue Center, Department of Surgery, Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada

Abstract

Future improvements in the recovery and function of pancreatic islets following cryopreservation will require a more precise quantification of the stresses that occur at each stage of the cryopreservation protocol. Changes in solution osmolality during the addition and dilution of cryoprotectants and during freezing and thawing induce changes in islet volume that may exceed tolerable limits. The aim of this study was to determine the range of solution osmolalities that results in significant changes in islet function. Islets were isolated from canine pancreases by collagenase digestion and Euro-Ficoll purification. Following 12-h culture at 37°C, islets were counted and dispensed into multiwell plate inserts. Islet function was assessed in each well immediately before and 24 h following a 10-min osmotic challenge with hypo- or hyperosmotic solutions of PBS (0, 75, 150, 300, 600, 1200, or 2300 mOsm/kg) at 22°C. Canine islets reached their osmotic equilibrium within 10 min. Duplicate wells were used for each osmolality treatment for each of six donors (n = 12). No significant differences in basal or glucose-stimulated insulin secretion were found between wells prior to the osmotic challenge (3.35 ± 0.45 and 20.98 ± 3.36 μIU/IE/h, respectively). Following the osmotic challenge and 24-h in vitro tissue culture, a significant increase in basal secretion was observed for islets exposed to 0 and 75 mOsm/kg solutions and a significant decrease for islets exposed to 2300 mOsm/kg solution. Islets exposed to 0 and 2300 mOsm/kg solutions showed significant decreases in the stimulated insulin secretion when compared to controls. Solution osmolalities of 150–1200 mOsm/kg appear to be tolerated by canine islets with no significant deviations in insulin secretion. The corresponding tolerable volume range was 152.6 ± 6.8% to 60 ± 5.1% of the isotonic islet volume. The minimum critical volume was used in a theoretical analysis of the islet volumes that would result from equilibrium freezing in dimethyl sulfoxide (DMSO). The calculations show that 1.5 mol/l DMSO is sufficient to prevent damage to islets due to excessive shrinkage. Further refinement of cryoprotectant addition and dilution protocols, and cooling and warming protocols for canine islets, are now possible.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3