Islet Allograft Rejection in Rats: a Time Course Study Characterizing Adhesion Molecule Expression, Mhc Expression, and Infiltrate Immunophenotypes

Author:

Coddington Douglas A.1,Yang Hua12,Rowden Geoffrey1,Colp Pat1,Issekutz Thomas B.1342,James R. Wright12

Affiliation:

1. Departments of Pathology, Pediatrics, Izaak Walton Killam–Grace Health Centre, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada

2. Departments of Pathology, Surgery, Izaak Walton Killam–Grace Health Centre, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada

3. Departments of Pathology, Microbiology Izaak Walton Killam–Grace Health Centre, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada

4. Departments of Pathology, Immunology, Izaak Walton Killam–Grace Health Centre, Dalhousie University Faculty of Medicine, Halifax, Nova Scotia, Canada

Abstract

Wistar Furth (RT1u) islets transplanted under the renal capsules of streptozotocin-diabetic Lewis (RT1l) rats reject after 5–6 days of normoglycemia. Hand-picked WF islets (1500–2000) were transplanted under the kidney capsules of diabetic Lew or WF rats. Rats bearing iso- or allografts were killed on posttransplant days 2, 4, and 6. Serial frozen sections of grafts and controls were stained by immunoperoxidase for rat MAC-1, class II MHC, CD2, CD4, CD8, B-cells, VLA-4, LFA-1, L-selectin, ICAM-1, and VCAM-1. Infiltrating cells, parenchymal cells, and endothelial cells in five distinct compartments (i.e., peritoneal reflection, subcapsular perivascular space, islet grafts, graft–kidney interface, and kidney) were evaluated for expression of the various markers at each interval. Significant infiltrates arrived in three distinct waves in both iso- and allografts. First, macrophages blanketed the peritoneal capsular reflection and infiltrated by day 2. Second, the first wave of lymphocytes arrived in the edematous subcapsular soft tissue via capsular vessels by day 2 (allo > iso). Third, the second wave of lymphocytes arrived from the renal parenchyma to form a dense band at the graft–kidney interface and around grafts by days 4 and 6 (allo >>> iso); CD4+ cells vastly outnumbered CD8+ cells, with CD4+ cells being mobilized first and from interstitial vessels throughout the entire kidney. CD8+ cells emigrated only from renal interstitial vessels adjacent to the graft. Large numbers of L-selectin+, VLA-4+, and LFA-1+ cells were seen in the infiltrates with the most intensely staining cells being intravascular. B-cells composed a very small proportion of infiltrating cells in both allo- and isografts. Endothelial staining for ICAM-1 and VCAM-1 was prominent throughout. Both class II MHC and ICAM-1 expression were induced on renal tubular epithelial cells, but neither was found on islet parenchymal cells. In conclusion, this study shows that islet allograft rejection is more complex than previously realized.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3