Colonization of Neural Allografts by Host Microglial Cells: Relationship to Graft Neovascularization

Author:

Pennell Nathan A.1,Streit Wolfgang J.1

Affiliation:

1. Department of Neuroscience, University of Florida Brain Institute, Gainesville, FL 32610 USA

Abstract

In order to illuminate functional roles of microglial cells within neural allografts, we have transplanted both whole and microglial and endothelial cell-depleted E14 neural cell suspensions into the intact striatum of Sprague-Dawley rats. Following posttransplantation times of up to 30 days, the intrastrial allografts were analyzed histochemically using the Griffonia simplicifolia B4 isolectin, a marker for both microglia and blood vessels. Our results indicate that both whole and depleted suspension grafts develop identically in terms of neovascularization and microglial colonization. In both types of transplants microglial cells appeared before any blood vessels were apparent. The main phase of graft vascularization occurred between days 7 and 10 posttransplantation and neovascularization was complete by day 21, as revealed by quantitative image analysis. Microglial cells, which were present as ameboid cells during early posttransplantation times, underwent continuing cell differentiation with time that paralleled graft vascular development. By 30 days posttransplantation microglia within the grafts had assumed the fully ramified phenotype characteristic of resting adult microglia. During graft development and vascularization, microglia were often seen in close proximity to ingrowing blood vessels and vascular sprouts. In conclusion, our study has shown that microglial colonization of grafts and graft vascularization occurs independent of donor-derived microglial and endothelial cells, and suggests that the great majority of microglia and vessels within the graft are host derived. We hypothesize that the host microglia invading the allografts play an active role in promoting graft neovascularization.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3