Cellular Delivery of Human Cntf Prevents Motor and Cognitive Dysfunction in a Rodent Model of Huntington's Disease

Author:

Emerich Dwaine F.1,Cain Chris K.1,Greco Corinne1,Saydoff Joel A.1,Hu Zhong Yi1,Liu Hanjiu1,Lindner Mark D.1

Affiliation:

1. Cyto Therapeutics, Inc. Providence, RI 02906 USA

Abstract

The delivery of ciliary neurotrophic factor (CNTF) to the central nervous system has recently been proposed as a potential means of halting or slowing the neural degeneration associated with Huntington's disease (HD). The following set of experiments examined, in detail, the ability of human CNTF (hCNTF) to prevent the onset of behavioral dysfunction in a rodent model of HD. A DHFR-based expression vector containing the hCNTF gene was transfected into a baby hamster kidney fibroblast cell line (BHK). Using a polymeric device, encapsulated BHK-control cells and those secreting hCNTF were transplanted bilaterally into rat lateral ventricles. Eight days later, the same animals received bilateral injections of quinolinic acid (QA, 225 nmol) into the previously implanted striata. A third group received sham surgery (incision only) and served as a normal control group. Bilateral infusions of QA produced a significant loss of body weight and mortality that was prevented by prior implantation with hCNTF-secreting cells. Moreover, QA produced a marked hyperactivity, an inability to use the forelimbs to retrieve food pellets in a staircase test, increased the latency of the rats to remove adhesive stimuli from their paws, and decreased the number of steps taken in a bracing test that assessed motor rigidity. Finally, the QA-infused animals were impaired in tests of cognitive function — the Morris water maze spatial learning task, and the delayed nonmatching-to-position operant test of working memory. Prior implantation with hCNTF-secreting cells prevented the onset of all the above deficits such that implanted animals were nondistinguishable from sham-lesioned controls. At the conclusion of behavioral testing, 19 days following QA, the animals were sacrificed for neurochemical determination of striatal choline acetyltransferase (ChAT) and glutamic acid decarboxylase (GAD) levels. This analysis revealed that QA decreased striatal ChAT levels by 35% and striatal GAD levels by 45%. In contrast, hCNTF-treated animals did not exhibit any decrease in ChAT levels and only a 10% decrease in GAD levels. These results support the concepts that implants of polymer-encapsulated hCNTF-releasing cells can be used to protect striatal neurons from excitotoxic damage, produce extensive behavioral protection as a result of that neuronal sparing, and that this strategy may ultimately prove relevant for the treatment of HD.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3