Affiliation:
1. The Miami Project to Cure Paralysis, University of Miami School of Medicine, Miami, FL 33136, USA.
2. Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL 33136, USA.
3. Department of Physiology and Biophysics, University of Miami School of Medicine, Miami, FL 33136, USA.
4. Department of Cell Biology and Anatomy, University of Miami School of Medicine, Miami, FL 33136, USA.
Abstract
Potential labels for identifying embryonic raphe neurons and a clonal, neuronally differentiating, raphe-derived cell line, RN33B, in CNS transplantation studies were tested by first characterizing the labels in vitro. The labels that were tested included 4,6-diamidino-2-phenylindole hydrochloride, 1,1′-dioctadecyl-3,3,3′-tetramethylindocarbocyanine perchlorate, the Escherichia coli lacZ gene, Fast Blue, Fluoro-Gold, fluorescein-conjugated latex microspheres, fluorescein isothiocyanate-conjugated or nonconjugated Phaseolus vulgaris leucoagglutinin, methyl o-(6-amino-3′-imino-3H-xanthen-9-yl) benzoate monohydrochloride, or tetanus toxin C fragment. Subsequently, the optimal in vitro labels for embryonic raphe neurons and for RN33B cells were characterized in vivo after CNS transplantation. In vitro, 1,1-dioctadecyl-3,3,3′-tetramethylindocarbocyanine perchlorate (DiI) optimally labeled embryonic neurons. The Escherichia coli lacZ gene optimally labeled RN33B cells. Most labels were rapidly diluted in cultures of embryonic astrocytes and proliferating RN33B cells. Some labels were toxic and were often retained in cellular debris. In vivo, DiI was visualized in transplanted, DiI-labeled raphe neurons, but not in astrocytes up to 1 mo posttransplant. DiI-labeled host cells were seen after transplantation of lysed, DiI-labeled cells. β-Galactosidase was visualized in transplanted, Escherichia coli lacZ gene-labeled RN33B cells after 15 days in vivo. No β-galactosidase was seen in host cells after transplantation of lysed, lacZ-labeled RN33B cells. The results demonstrate that labels for use in CNS transplantation studies should be optimized for the specific population of donor cells under study, with the initial step being characterization in vitro followed by in vivo analysis. Appropriate controls for false-positive labeling of host cells should always be assessed.
Subject
Transplantation,Cell Biology,Biomedical Engineering
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献