Affiliation:
1. Department of Chemical Engineering and Applied Chemistry and Center for Biomaterials, University of Toronto, Toronto, Ontario M5S 1A4, Canada
Abstract
To better understand encapsulated cell behaviour, Chinese Hamster Ovary (CHO) fibroblasts were encapsulated in HEMA-MMA microcapsules and short-term (<2 wks) proliferation and changes in metabolic activity were investigated in vitro. CHO cells were observed to undergo rapid proliferation in the first week following encapsulation after which a growth arrest was obtained at ~3500 cells/capsule. The cell growth was localized in aggregates in the capsule core, resulting in high local cell density but low cell density in the whole capsule interior (~107 cells/mL). The total metabolic activity, as determined by the MTT (3-14,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium) assay, within the microcapsules increased in the first week, with no significant change afterwards. A broad variation in metabolic activity among the individual capsules was obtained. Supplementing the cell suspension with 20% Ficoll 400 during the encapsulation process resulted in significantly higher morphological uniformity among the individual capsules (with reduced capsule wall thickness and eccentricity); however, this did not change the extent of heterogeneity in metabolic activity. We conclude that viability and proliferation ability (at least to a limited extent) of CHO cells are maintained in HEMA-MMA microcapsules. The local cell growth and subsequent growth arrest remain issues to be addressed in order to obtain better utilization of the microcapsule core volume. Alternatively, small diameter (<400 μm as opposed to the present ~750 μm diameter) capsules are necessary.
Subject
Transplantation,Cell Biology,Biomedical Engineering
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献