Regulatory T Cells Maintain Peripheral Tolerance to Islet Allografts Induced by Intrathymic Injection of MHC Class I Allopeptides

Author:

Saborio David V.1,Chowdhury Nepal C.1,Jin Ming-Xing1,Chandraker Anil2,Sayegh Mohamed H.2,Oluwole Soji F.1

Affiliation:

1. Department of Surgery, College of Physicians and Surgeons of Columbia University, New York, NY

2. Laboratory of Immunogenetics and Transplantation, Brigham and Women's Hospital, Harvard Medical School, Boston, MA

Abstract

Although transplantation remains the treatment of choice for diabetes mellitus, immunological rejection of allografts continues to be a major problem. The search for strategies to prevent graft rejection led us to examine if the fate of developing T cells may be influenced by the presence of allo MHC class I peptides in the thymus because T cell receptor–MHC class I/self-peptide interaction regulates thymocyte development. We studied the effects of intrathymic (IT) injection of a short segment of a synthetic immunogenic MHC class I peptide (peptide 2, residues 67–85) of the hypervariable domain of RT1.A derived from WAG rat (RT1U) on islet graft survival in the WF(RT1U)-to-ACI combination. Adult diabetic male recipients were treated with IT injection of a single WAG-derived MHC class I peptide 7 days before intraportal islet transplantation. Long-term unresponsive islet recipients were examined for the development of alloantigen (Ag)-specific regulatory cells. The results showed that while IT injection of 150 μg peptide 2 on day –7 did not prolong graft survival in naive recipients [median survival time (MST) of 14.0 days vs. 9.6 in controls], IT injection of 300 or 600 μg peptide 2 led to normoglycemia and permanent islet survival (> 200 days) in 4/6 and 3/5 STZ-induced diabetic ACI recipients, respectively. IT injection of 150, 300, or 600 μg peptide 2 combined with 0.5 antilymphocyte serum (ALS) immunosuppression on day –7 led to 100% permanent islet allograft survival (> 200 days) compared to MST of 15.0 ± 2.3 days in ALS alone-treated controls. Similarly prepared animals rejected third-party Brown Norway (BN) islets in an acute fashion, thus demonstrating donor specificity. Intravenous injection of 300 μg peptide 2 combined with 0.5 ml ALS did not prolong islet allograft survival. The long-term unresponsive islet allograft recipients challenged with second set grafts accepted permanently 100% donor-type cardiac allografts while rejecting third-party (BN) hearts without rejecting the primary Wistar Furth (WF) islets. In analyzing the underlying mechanisms of acquired systemic tolerance, we found no suppressor/regulatory cells in adoptive transfer studies in tolerant animals at 30 days after IT injection of allopeptides. In contrast, adoptive transfer of 5 × 107 unseparated spleen cells from tolerant animals at 60 and 100 days after islet transplantation into lightly irradiated [200 rad total body irridation (TBI)] ACI recipients led to donor-specific permanent islet graft survival in 2/3 and 4/5 secondary recipients, respectively, compared to an MST of 13.8 days in lightly irradiated ACI given unmodified syngeneic spleen cells. In addition, adoptive transfer of 2 × 107 purified T cells obtained from long-term functioning islet recipients led to permanent donor-specific islet survival in secondary recipients. The finding that IT injection of a short segment of a synthetic immunodominant MHC class I peptide derived from WAG that shares the RT1.AU domain with the graft donor is capable of inducing acquired systemic tolerance to WF islets suggests that linked recognition or epitope suppression may be involved in the induction of unresponsiveness. Generation of peripheral Ag-specific regulatory cells that suppress Ag-specific alloreactive T cells is, in part, responsible for the maintenance of tolerance in this model.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3