Secretion from Islets and Single Islet Cells following Cryopreservation

Author:

Lakey Jonathan R. T.1,Aspinwall Craig A.2,Cavanagh Thomas J.3,Kennedy Robert T.2

Affiliation:

1. Surgical-Medical Research Institute, University of Alberta, Edmonton, Alberta, Canada

2. Department of Chemistry, University of Florida, Gainesville, FL

3. Roche Molecular Biochemicals, Indianapolis, IN

Abstract

The ability to cryopreserve pancreatic islets has allowed the development of low-temperature banks that permit pooling of islets from multiple donors and allows time for sterility and viability testing. However, previous studies have shown that during cryopreservation and thawing there is a loss of islet mass and a reduction in islet function. The aim of this study was to measure and compare insulin secretion from cultured nonfrozen and frozen–thawed canine islets and β-cells. Canine islets were isolated from mongrel dogs using intraductal collagenase distention, mechanical dissociation, and EuroFicoll purification. One group of purified islets was cultured overnight before dissociation into single cells and subsequent analysis. Remaining islets were cultured overnight (22°C) and then cryopreserved in 2 M dimethyl sulfoxide (DMSO) solution using a slow stepwise addition protocol with slow cooling to −40°C before storage in liquid nitrogen (−196°C). Frozen islets were rapidly thawed (200°C/min) and the DMSO removed using a sucrose dilution. From a series of seven consecutive canine islet isolations, islet recovery following postcryopreservation tissue culture was 81.5 ± 4.8% compared to precryopreservation counts. In vitro islet function was equivalent between cultured nonfrozen and frozen–thawed islets with a calculated stimulation index of 10.4 ± 1.5 (mean ± SEM) for the frozen–thawed islets, compared with 12.4 ± 1.2 for the cultured nonfrozen controls (p = ns, n = 7 paired experiments). Amperometric detection of secretion from single β-cells in vitro has the sensitivity and temporal resolution to detect single exocytotic events and allows secretion to be monitored from single β-cells in real time. Secretion from single β-cells elicited by chemical stimulation was detected using a carbon fiber microelectrode. The frequency of exocytosis events was equivalent between the cultured nonfrozen and frozen–thawed β-cells with an average of 7.0 ± 1.32 events per stimulation for the cultured nonfrozen group compared with 6.0 ± 1.45 events from the frozen then thawed preparations (minimum of 10 cells per run per paired experiment, p = ns) following stimulation with tolbutamide. The average amount of insulin released per individual exocytosis event was equivalent for the cultured nonfrozen and frozen–thawed islets. In addition, β-cells responded to both tolbutamide and muscarinic stimulation following cryopreservation. It was determined that β-cells recovered following cryopreservation are capable of secreting insulin at levels and frequencies comparable to those of cultured nonfrozen islet preparations.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3