Pretransplant Induction of HSP-70 in Isolated Adult Pig Islets Decreases Early Islet Xenograft Survival

Author:

Brandhorst Daniel1,Hammes Hans-Peter1,Brandhorst Heide1,Zwolinski Anke1,Nahidi Fariborz1,Alt Alexandra1,Bretzel Reinhard G.1

Affiliation:

1. Third Medical Department, Justus-Liebig-University, 35385 Giessen, Germany

Abstract

The heat-induced HSP-70 expression protects rat islet single cells against lysis mediated by nitric oxide (NO), reactive oxygen, and streptozotocin. The present study was performed to investigate the potential antiinflammatory effect of pretransplant heat shock in adult pig islets for subsequent early islet xenograft survival. Maximum HSP-70 expression in freshly isolated pig islets was induced by hyperthermia at 43°C for 90 min prior to islet regeneration at 37°C for 4–6 h. Heat-stressed and sham-treated islets were incubated in 0.6 mM H2O2 or 1.5 mM Na-nitroprusside at 37°C for 20 h. Early graft survival was evaluated in normoglycemic Lewis rats after simultaneous, contralateral transplantation of heat-shocked islets and sham-treated islets into the renal subcapsular space of the same recipient. Prior hyperthermia significantly reduced specific lysis of islets exposed to NO or H2O2, although protection was only marginal. No differences were observed between viability of heat-shocked and sham-treated islets after NO exposure. In contrast, prior heat shock increased islet viability after H2O2 treatment. The finding that hyperthermia reduced recovery of initially grafted pig insulin 48 h after transplantation by 30% compared to controls contrasted significantly with an increased insulin recovery in heat-exposed islets at the end of simultaneous 37°C culture. The observation, that the heat-induced HSP-70 expression decreases early islet xenograft survival as reflected by recovery of grafted insulin, implies an enhancement of islet immunogenicity and the induction of apoptosis. Future experiments aiming at augmentation of intrinsic defense mechanims should consider detrimental effects associated with induction of heat shock proteins.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3