Celecoxib Synergistically Enhances MLN4924-Induced Cytotoxicity and EMT Inhibition Via AKT and ERK Pathways in Human Urothelial Carcinoma

Author:

Xiong Shida1,Huang Wei1,Liu Xiaoqiang1,Chen Qian1,Ding Yi1,Huang Haoxuan1,Zhang Ru2,Guo Ju1ORCID

Affiliation:

1. Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, P.R. China

2. Department of Urology, Yichun Second People’s Hospital, Yichun, P.R. China

Abstract

MLN4924 is a specific small-molecule inhibitor of NEDD8-activating enzyme (NAE) that blocks the neddylation modification cascade. Several I/II/III clinical trials suggested that MLN4924 exerts an antitumor effect against various malignancies. However, recent studies have also found that MLN4924 activates the PI3K/AKT and MAPK/ERK signal pathways, important regulators of tumorigenesis, and drug resistance in human urothelial carcinoma (UC). This study examined the synergistic effect of celecoxib, a cyclooxygenase-2 (COX-2) selective inhibitor, on MLN4924-induced cytotoxicity and epithelial–mesenchymal transition (EMT) inhibition via AKT and ERK pathways in human UC. We performed both in vitro and in vivo experiments. Briefly, a combination of MLN4924 and celecoxib reduced the protein expression of p-AKT(S473) and p-ERK in UC cell lines. Moreover, celecoxib shifted the half-maximal inhibitory concentration (IC50) curve of MLN4924 to the left, and the combinational effect of MLN4924 and celecoxib showed significant synergism in T24 and 5637 cells. Also, celecoxib enhanced the MLN4924 antitumor effects of inhibiting UC cell growth, colony formation, migration, invasion, and inducing apoptosis. In addition, celecoxib potentiated the MLN4924-induced EMT, decreased the expression of N-cadherin and vimentin, and activated the expression of E-cadherin. Celecoxib also increased the expression of pro-apoptosis proteins PARP and BAX and reduced the expression of antiapoptosis protein Bcl2. In vivo study indicated that the combination of MLN4924 and celecoxib synergistically suppressed the tumor growth in a UC xenograft nude-mice model, which was further supported by immunohistochemistry of tumor tissues. To sum up, our study revealed that celecoxib synergistically enhanced MLN4924-induced cytotoxicity and EMT inhibition in UC. It also inhibited the activation of AKT and ERK pathways, which were activated by MLN4924. These discoveries provide a new drug combination strategy for UC treatment.

Funder

Natural Science Foundation of China

Jiangxi Provincial Science and Technology Program

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3