Targeting Matrix Metalloproteinases: A Potential Strategy for Improving Cell Transplantation for Nervous System Repair

Author:

Tseng Yu-Ting123,Chen Mo123,John James St123,Ekberg Jenny123ORCID

Affiliation:

1. Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia

2. Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Brisbane, Queensland, Australia

3. Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia

Abstract

Cell transplantation shows promise for repair of the injured nervous system, including spinal cord injury (SCI) and peripheral nerve injury (PNI). There are, however, still problems hampering these therapies moving from bench to bedside, and the methods need optimization. Three-dimensional (3D) cell culture systems are suggested to improve outcomes, bridging the gap between the in vitro and in vivo environments. In such constructs, cells are allowed to interact with each other and with the extracellular matrix (ECM) in 3D as they do in vivo. Transplanting cells in 3D constructs, rather than in suspension, is thought to promote cell survival and maintain important cellular behaviors. One such critical behavior is cell migration into and within the injury site. Understanding and controlling the migratory capability of 3D-cultured cells is therefore pivotal for developing better transplantation techniques. ECM remodelling can influence numerous cellular functions, including cell migration and matrix metalloproteinases (MMPs) are important enzymes for ECM modulation. Here, we discuss the idea of modulating MMPs to control cell migration in 3D culture systems, which can improve the therapeutic potential of cells transplanted in 3D.

Funder

Perry Cross Spinal Research Foundation

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3