Immunomodulation with Intrathymic Grafts or Anti-Lymphocyte Serum Promotes Long-Term Intraspinal Allograft Survival

Author:

Theele Daniel P.1,Reier Paul J.2

Affiliation:

1. Departments of Physiological Sciences, Veterinary Medicine University of Florida Colleges of Gainesville, FL 32610 USA

2. Departments of Neuroscience and Neurological Surgery, University of Florida Colleges of Medicine, Gainesville, FL 32610 USA

Abstract

In this study, we sought to test whether introduction of fetal cells into the adult rat thymus would promote immunotolerance to subsequent donor-type allografts in the injured spinal cord. To first evaluate intrathymic survival of fetal central nervous system (CNS) tissue, fragments of E14 Sprague–Dawley (SD) fetal spinal cord (FSC,SD) were injected into the thymuses of either adult, outbred SD, or Wistar rats. Histological examination revealed well-differentiated grafts in both the SD (10 out of 13) and Wistar (7 out of 13) recipients. We next examined whether prior intrathymic exposure to FSC graft-derived alloantigens leads to enhanced survival of subsequent allografts into the injured, adult spinal cord. Wistar rats thus first received FSCSD tissue as intrathymic grafts coupled with single-dose, anti-lymphocyte serum (ALS) ablation of the circulating host T-cell population. Ten days later, FCSSD was transplanted into an aspiration lesion of each intrathymic graft recipient's spinal cord. After 60 days, 87% of two-stage graft recipients (n = 15) exhibited viable intraspinal (IS) grafts compared to 38% (3 out of 8) observed in the controls (i.e., not receiving intrathymic grafts). Another group of Wistar rats that had received ALS (only) at the time of the IS FSCSD transplant (n = 8) also had 75% graft survival rates after 60 days. These initial findings show that the intrathymic microenvironment can be a compatible ectopic site for fetal SC graft development and survival. Also, the enhanced survival of intraspinal grafts in animals with previous intrathymic implants or ALS administered at the time of grafting suggests the potential for inducing immunoprotection of some fetal neural allografts in adult recipients.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3