Cytoskeletal Protein Immunoexpression in Fetal Neural Grafts: Distribution of Phosphorylated and Nonphosphorylated Neurofilament Protein and Microtubule-Associated Protein 2 (Map-2)

Author:

Rosenstein Jeffrey M.1,Krum Janette M.1

Affiliation:

1. Departments of Anatomy and Neurological Surgery, The George Washington University Medical Center, Washington, DC 20037 USA

Abstract

The present study examined the immunocytochemical expression of important cytoskeletal proteins within the neurons of an extended series of neocortical grafts and smaller group of ventral mesencephalic (nigral) grafts. Using antibodies that were directed at all three neurofilament (NF) epitopes, NF-L, NF-M, and NF-H, we attempted to determine whether these neurons would have an altered cytoskeletal profile following the stress of transplantation, because previous studies have shown such changes following ischemia or direct brain injury. We studied phosphorylated NF protein, which is found predominantly in axons, nonphosphorylated NF protein, which is found predominantly in the somata-dendritic compartment, and MAP-2, a specific microtubule marker that is localized exclusively in the somato-dendritic compartment. The results show that in all neocortical grafts examined, both phosphorylated and nonphosphorylated NF immunoexpression was significantly downregulated and appeared only in relatively few axons and somatic profiles, respectively, even though there were numerous Nissl-stained neuronal profiles in the grafts. There was no particular pattern to the immunopositive profiles. At later times occasional neuronal profiles were positive for phosphorylated NF protein, suggesting a reaction to cellular injury. In contrast to neocortical grafts, the cytoskeletal profiles of MAP-2 and phosphorylated NF protein in nigral grafts appeared very similar to age-matched control although the nonphosphorylated NF protein expression did appear somewhat lessened at 1-2 mo postoperative. Because cytoskeletal proteins play important roles in neuronal size, shape, and structural stability, they may subserve key cellular issues in neural grafting. These results show a significant loss of cytoskeletal protein expression in neocortical grafts that does not occur in nigral grafts. These results suggest that fetal neurons from different brain regions (i.e., graft source) may respond differently to the grafting procedure insofar as their cytoskeletal makeup is concerned. In addition, a potential lack of appropriate growth substrates or synaptic contacts may also produce cytoskeletal alterations. As such, the cytoskeletal protein profiles in central nervous system (CNS) grafts may be useful markers for functional performance, perhaps reflecting a degree of cellular injury.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3