Affiliation:
1. Departments of Anatomy and Cell Biology University of Illinois at Chicago, Chicago, IL 60612 USA
2. Departments of Surgery, University of Illinois at Chicago, Chicago, IL 60612 USA
Abstract
Adrenal chromaffin cells have been utilized for several neural grafting applications, but limitations in allogeneic donor availability and dangers inherent in auto-grafting limit the widespread use of this approach clinically. While xenogeneic donors offer promise as a source for cell transplantation in the central nervous system (CNS), immunologic responses to cellular components of the adrenal medulla have not been well characterized. To further study the host T cell xenogeneic response to chromaffin and passenger cells of the adrenal medulla, an in vitro lymphocyte proliferation assay was used. Lymphocyte proliferation was determined by mixing rat lymphocytes with potential stimulator cell subpopulations of the bovine adrenal medulla: isolated chromaffin cells, isolated endothelial cells, or passenger nonchromaffin cells, which include a mixture of fibroblasts, smooth muscle cells, and endothelial cells. As a positive control, bovine aortic endothelial cells were also used. 3[H]-thymidine incorporation, corresponding to lymphocyte proliferation, was measured. Results indicated that isolated bovine chromaffin cells produce only a mild, statistically insignificant stimulation of rat lymphocytes. In contrast, there was a significant response to passenger nonchromaffin cells of the adrenal medulla, especially endothelial cells. The inclusion of low levels of cyclosporin A in the cultures completely eliminated the mild proliferative response to isolated bovine chromaffin cells, while near toxic levels were necessary to abrogate the response to endothelial cells. Immunocytochemical analysis revealed that routine chromaffin cell isolation procedures result in the inclusion of a small percentage of endothelial cells, which may be responsible for the slight lymphocyte stimulation. The results of this study indicate that isolated chromaffin cells possess low immunogenicity, and suggest that passenger cells in the adrenal medulla, particularly endothelial cells, may be primarily responsible for progressive rejection in CNS grafts. Thus, removal of passenger nonchromaffin cells from xenogeneic donor tissues prior to transplantation may produce a more tolerated graft in rodent models of neural transplantation.
Subject
Transplantation,Cell Biology,Biomedical Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献