Affiliation:
1. Buddhist Tzu Chi Bioinnovation Center, Tzu Chi Foundation, Hualien, Republic of China
2. Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Republic of China
3. Department of Stem Cell Applied Technology, Gwo Xi Stem Cell Applied Technology, Hsinchu, Republic of China
4. Department of Pathology, Hualien Tzu Chi Hospital & Tzu Chi University, Hualien, Republic of China
Abstract
Stem cell transplantation is a fast-developing technique, which includes stem cell isolation, purification, and storage, and it is in high demand in the industry. In addition, advanced applications of stem cell transplantation, including differentiation, gene delivery, and reprogramming, are presently being studied in clinical trials. In contrast to somatic cells, stem cells are self-renewing and have the ability to differentiate; however, the molecular mechanisms remain unclear. SOX2 (sex-determining region Y [ SRY]-b ox 2) is one of the well-known reprogramming factors, and it has been recognized as an oncogene associated with cancer induction. The exclusion of SOX2 in reprogramming methodologies has been used as an alternative cancer treatment approach. However, the manner by which SOX2 induces oncogenic effects remains unclear, with most studies demonstrating its regulation of the cell cycle and no insight into the maintenance of cellular stemness. For controlling certain critical pathways, including Shh and Wnt pathways, SOX2 is considered irreplaceable and is required for the normal functioning of stem cells, particularly neural stem cells. In this report, we discussed the functions of SOX2 in both stem and cancer cells, as well as how this powerful regulator can be used to control cell fate.
Funder
Ministry of Science and Technology, Taiwan
Subject
Transplantation,Cell Biology,Biomedical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献