To Research the Effects of Storage Time on Autotransfusion based on Erythrocyte Oxygen-Carrying Capacity and Oxidative Damage Characteristics

Author:

Li Zhen-Zhou12,Jia Dong-Lin3,Wang Huan1,Zhou Xiao-Fang1,Cheng Yong1,Duan Li-Shuang1,Yin Lei1,Wei Han-Wei1,Guo Wei4,Guo Jian-Rong12ORCID

Affiliation:

1. Department of Anesthesiology, Shanghai Gongli Hospital, the Second Military Medical University, Shanghai, P. R. China

2. Ningxia Medical University, Gongli Hospital of Shanghai Pudong New Area Training Base, Shanghai, P.R. China

3. Department of Pain Medicine, Peking University Third Hospital, Beijing, China

4. Department of Intensive Care Unit, Anhui Provincial Lujiang County People’s Hospital, Hefei, P.R. China

Abstract

Autotransfusion refers to a blood transfusion method in which the blood or blood components of the patient are collected under certain conditions, returned to himself when the patient needs surgery or emergency after a series of storing and processing. Although autotransfusion can avoid blood-borne diseases and adverse reactions related to allogeneic blood transfusion, a series of structural and functional changes of erythrocytes will occur during extension of storage time, thus affecting the efficacy of clinical blood transfusion. Our research was aimed to explore the change of erythrocyte oxygen-carrying capacity in different storage time, such as effective oxygen uptake (Q), P50, 2,3-DPG, Na+-K+-ATPase, to detect membrane potential, the change of Ca2+, and reactive oxygen species (ROS) change of erythrocytes. At the same time, Western blot was used to detect the expression of Mitofusin 1 (Mfn1) and Mitofusin 2 (Mfn2) proteins on the cytomembrane, from the perspective of oxidative stress to explore the function change of erythrocytes after different storage time. This study is expected to provide experimental data for further clarifying the functional status of erythrocytes with different preservation time in patients with autotransfusion, achieving accurate infusion of erythrocytes and improving the therapeutic effect of autologous blood transfusion, which has important clinical application value.

Funder

natural science foundation of shanghai

Key Disciplines Group Construction Project of Pudong Health Bureau of Shanghai

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3