Circ SMARCA5 Inhibited Tumor Metastasis by Interacting with SND1 and Downregulating the YWHAB Gene in Cervical Cancer

Author:

Zhang Xia1,Zhang Qing1,Zhang Ke1,Wang Fang1,Qiao Xiaogai1,Cui Jinquan1ORCID

Affiliation:

1. Department of Gynaecology and Obstetrics, the Second Affiliated Hospital of Zhengzhou University, Henan Province, China

Abstract

Cervical cancer is one of the diseases that seriously endanger women’s health. Circular RNA plays an important role in regulating the occurrence and development of cervical cancer. Here, we investigated the mechanisms of circ SMARCA5 in the development of cervical cancer. Quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) results showed that the expression of SMARCA5 was downregulated in cervical cancer tissues and cell lines. Then we found that overexpression of SMARCA5 inhibited proliferation and invasion, but promoted apoptosis in cervical cancer cells. These were detected by Cell Counting Kit-8, Transwell, and Annexin V-fluorescein isothiocyanate/propidium iodide detection kit, respectively, and the expression of the apoptosis-related proteins was determined by western blotting. Then we predicted that SMARCA5 combined with Staphylococcal nuclease domain-containing 1 (SND1) by starBase, and verified by RNA pull-down assay. To further reveal the molecular mechanisms of SMARCA5 in the progression of cervical cancer, the interaction protein of SND1 was predicted by STRING, and the interaction was verified by co-immunoprecipitation assay. Then, the effects of SND1 or YWHAB on the development of cervical cancer were detected by the gain and loss function test, and we found that knockdown of SND1 or YWHAB reversed the effects of SMARCA5 short interfering RNA on proliferation, invasion, and apoptosis of cervical cancer cells. Overexpression of SMARCA5 inhibited cervical cancer metastasis in vivo. Our results showed that overexpression of circ SMARCA5 inhibits the binding of SND1 to YWHAB, and inhibits the proliferation and invasion, but promotes apoptosis in cervical cancer cells, thus inhibiting the metastasis of cervical cancer.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3